
18

Minimization of Test Suite through

Regress Analysis of Requirement Coverage

Dr. Rajat Sheel Jain, Dr. Amit Gupta

Abstract – Requirements are very important

features for the designing of any software

application. Test suite creation is a big and hectic

task for the Software Quality Analyst. We propose

to develop a technique for analysis of Covered

Requirement and its impact on the designed Test

suite. The requirement associated with the test

cases accepts specification like execution time,

costing for minimization of test suite. The

specification analyser compares the information

about the techniques like Precision, Efficiency,

Inclusiveness and Generality. By reducing the test

suite size, we can reduce the execution cost and

time, validation and management of the test cases

from the suite for future releases of the software

and able to maintain the fault detection capability

by reusing the refined test cases. The requirement

coverage will increase time-effectiveness in sorting

the features of the application and reduces the

duplicacy. An improved rate of testing activity will

provide faster feedback of the system under test.

Keywords: Requirement Coverage, Retesting &

Regression Testing, Data Flow Technique and

Suite Refinement.

Dr. Rajat Sheel Jain

Department of Information Technology, Institute of Management Studies,

Noida, India
 jainrajatsheel@gmail.com

Dr. Amit Gupta

Maharaja Agrasen Institute of Management Studies, New Delhi, India

amitgupta21@gmail.com

I. INTRODUCTION

Software Quality Testing is a part of verification

and validation. The software quality assurance is

essential for organisations. The main objective is to

reduce the cost of guarantying quality throughout

the software development process.

Software Testing is the activity that individual does

with the intention to find out the errors in software

applications. Regression Testing is the process of

validating modified software to detect whether the

new errors have been introduced into the previously

tested codes and provide confidence that the

modifications are correct.

Since the regression testing is an expensive process,

researches have proposed regression test selection

techniques as a way to reduce some of this

experience. These techniques attempt to reduce the

costs by selecting and running subsets of the test

cases in the program’s existing test suites .however

it is difficult to compare and evaluate these

techniques because they can be used to solve the

different problem goals.

All code-based regression test selection techniques

attempt to select a subset T’ of T that will be

helpful in establishing confidence that P’ was

modified correctly and that P’s functionality has

been preserved where required. In this sense, all

code-based test selection techniques are concerned,

among other things, with locating tests in T that

expose faults in P’. Thus, it is appropriate to

evaluate the relative abilities of the techniques to

choose tests from T that detect faults.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

mailto:jainrajatsheel@gmail.com

19

II. VARIOUS SELECTION TECHNIQUES FOR

REGRESSION TESTING

There are so many regression test selection

techniques: Path Analysis Technique, Data flow

Techniques, Requirement Coverage.

A. Requirement Coverage

The Software Application designed on the

requirement gathering. The requirements gathering

technique operate as minimization techniques, they

return small test suites and thus reduce the time

required to run the selected tests. The test suite can

be reduced until and unless it can get associated

with the requirements. However, due to the

calculations required to solve systems, it can be

found that the same requirements can be associated

with more than one test case. As soon as the

requirement can be associated with the test cases,

the status of the requirement will get updated from

“NOT COVERED” to “NO RUN”. Despite this

possible worst-case behaviour is that the same

requirement will get associated with number of

existing test cases in the test suite that can obtain

solutions, in practice, in times that may be

acceptable.

A selective requirement coverage retest technique

that uses systems under test to select test suites that

yield segment coverage of modified code.

Requirement coverage techniques use systems to

express relationships between tests and program

segments. The technique obtain requirements from

matrices that track program segments reached by

test cases, segments reachable from other segments,

and (optionally) definition-use information about

the segments.

B. Data Flow Technique
Several selective retest techniques are based on

dataflow analysis and testing techniques. Dataflow

test selection techniques identify definition-use

pairs that are new in, or modified for, P’, and select

tests that exercise these pairs. Some techniques also

identify and select tests for definition use pairs that

have been deleted from P. Two overall approaches

have been suggested. Incremental techniques

process a single change, select tests for that change,

incrementally update dataflow information and test

trace information, and then repeat the process for

the next change. Non-incremental techniques

process a multiply-changed program considering all

modifications simultaneously.

III. SYSTEM ARCHITECTURE

Fig. 1 System Architecture

The above framework will be used for the finding

of the fault detection capability of the test suite.

There will be the source program through which we

can take the input and give it to the test suite.

The test suite that contains the numbers of the test

cases specifies that which test cases will cover more

number of the program criteria.

The sizes of the test suite minimizes without

reducing their fault detection capability of the test

cases in the suite.

The framework analyses the test cases on the basis

of the four properties i.e. Inclusiveness, Precision,

Generality and Efficiency. Inclusiveness measures

the extent to which a technique chooses tests that

will cause the modified program to produce

different output than the original program, and

thereby expose faults caused by modifications.

Precision measures the ability of a technique to

avoid choosing tests that will not cause the

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

20

modified program to produce different output than

the original program. Efficiency measures the

computational cost, and thus, practicality, of a

technique. Generality measures the ability of a

technique to handle realistic and diverse language

constructs, arbitrarily complex code modifications,

and realistic testing applications. These categories

form a framework for evaluation of the test cases

that should be analysed through our specification

analyser and compare them.

IV. PROPOSED REQIREMENT COVERAGE PARSER

In this paper we proposed to implement the

Coverage algorithm which selects the test cases

from T whose outputs may be affected by the

modifications made to the programs.The algorithm

exploits the following observations:

1. Not all statements in the program are executed

under all test cases.

2. If a statement is not executed under a test case, it

cannot affect the program output for that test case.

3. If a statement is executed under a test case, it

does not necessarily affect the program output for

that test case

4. Every statement does not affect every part of the

program output.

The requirement coverage analyser will work as a

parser and to track test cases from the test suite pass

to the analyser where these cases will be observed

in terms of the statement coverage and costs-

benefits.

Using this algorithm to parse which decomposes the

program and selects test cases to ensure that there is

no linkage between the modified and unmodified

code.

V. RESULTS AND DISCUSSIONS

By using above discussed strategies and models we

found some good results for requirement coverage

and their association with the designed test suite.

Some results of our work are displayed here:

Fig 2: Designing of Requirements

Fig 3: Designing of Test Cases

Fig 4: Requirement Coverage with Test Cases

The requirement coverage may refine those test

cases that are associated with the designed

requirements and perform maximum statement

coverage with the minimum cost. The cost could be

found on the basis of the fact that, suppose that

there are hundreds of test cases in a test pool and

out of which only 30% test cases are found that

satisfy the criteria for the statement coverage and

their fault detection capability or efficiency cannot

be effected due to the any modifications made to

the program.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

21

The main benefit of requirement coverage is to

evaluate that every test case from the test suite will

get associated with the designed requirement and

compare them with the manual test cases that can

be directly given to the test pool. Now we will be

able to evaluate that which test cases are more

efficient, either manual test cases or those that

would be analysed by the requirement coverage

analyser satisfying different properties.

This will help in reducing test suite sizes by

refining them but the minimization cannot

compromise the fault detection parameters in

effectiveness of the coverage requirements.

VI. CONCLUSION AND FUTURE WORK

This paper find out that the framework is used to

identify the strengths and the weaknesses of those

test cases that cannot help for the minimization of

the test pool and may affect their fault detection

capability. With this approach, we have to

analytically evaluate the requirement coverage

associated with test suite and efficiency in terms of

cost and time for that test suite.

Our evaluation indicates that requirement that will

be associated with the test cases will be much more

effective for finding the faults which can be

compared and understood if our framework is used

for the industrial purposes. Once the framework is

to be applied it is used to demonstrate that for a

given test pool how many test cases are efficient for

the finding of the statement coverage and how

much cost is to be obtained for these test cases.

ACKNOWLEDGEMENT

The author express his sincere gratefulness to Mr.

Rajeev Kumar Gupta, The President, Institute of

Management Studies, Noida, India for his

encouragement and support throughout the work of

this wish and also for facilitating technical and

literature facilities, required in the development of

this work. One of the authors (Rajat Sheel Jain)

expresses his thanks to Mr. Alok Agrawal, Advisor,

Institute of Management Studies, Noida, India for

his valuable suggestions and encouragement.

REFERENCES

[1] G. Rothermel and M. Harold. Analyzing

regression test selection techniques. IEEE Trans.

On Softw. Eng., 22(8):537-561, Aug. 2006.

[2] W. E. Wong, J. R. Horgan, A. P. Mathur, and A.

Pasquini. Test set size minimization and fault

detection effectiveness: A case study in a space

application. In Proc. of the 21st Annual Int'l. Comp.

Softw. & Appl. Conf., pages 522-528, Aug. 1997.

[3]. Agrawal, H., Horgan, J.R., Krauser, E.W., and

London, S.A. Incremental regression testing. In

Proceedings of the IEEE Software Maintenance

Conference (1993), pp. 348–357.

[4]. Rothermel, G. and Harrold, M.J. A Comparison

of Regression Test Selection Techniques. Tech.

Rep., Department of Computer Science, Clemson

University, Clemson, SC, Oct. 1994.

[5] J.-M. Kim, A. Porter, and G. Rothermel. An

empirical study of regression test application

frequency. In Proc. of the 22nd Int'l. Conf. on

Softw. Eng., June 2000.

[6] D. Rosenblum and G. Rothermel. A

comparative study of regression test selection

techniques. In Proc. of the 2nd Int'l. Workshop on

Empir. Studies of Softw. Maint., Oct. 1997.

[7]. Rothermel, G. and Harrold, M.J. A safe,

efficient algorithm for regression test selection. In

Proceedings of the IEEE Software Maintenance

Conference (1993), pp. 358–367.

[8] W.E. Wong, J.R.Horgan, S.London, and

A.P.Mathur ,”Effect of the Test Set Minimization

on Fault Detection Effectiveness,”Proc.17
th

 Int’l

Conf.Software Eng., pp.41-50, Apr.1995.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

