
1

Comparison of Software Development Life Cycle

Models
Raj Kumari and Heena

Abstract—Software has become the necessity part of modern

society. There are several software development methodologies in

use today. Software development models basically fall into two

categories that are heavyweight and lightweight. Heavyweight

methodologies are traditional methodologies such as Waterfall,

Spiral, Iterative, RUP (Rational Unified Process) and lightweight

are agile methodologies such as Feature Driven Development,

Scrum, XP etc. This paper deals with unfolding Traditional

methodologies- Waterfall model and Agile methodologies-Feature

Driven Development with their advantages and disadvantages.

Index Terms—SDLC, Phases of SDLC, Heavyweight

methodologies, Lightweight methodologies, Waterfall model,

Feature Driven Development.

I. Introduction
SDLC is a systematic approach to solve problem and is

composed of several phases, each comprising multiple steps.

A software cycle deals with various parts of software and

phases from planning to deploying software. All the phases

are conceded according to the needs. Each way is known as a

Software Development Lifecycle Model (SDLC). [1]
It act as a framework that describes the activities performed at

each stage of a software development life cycle [2]

It is a process used to develop high quality software system

which meets customer requirements within time and cost

estimates. Software processes consist of set of activities that

lead to the production of software product. Today, companies

have lot of choices of models to develop their software. Each

model satisfies specific need of customer. Different

methodologies have been developed for the improvement of

the quality of the software still large and complicated software

projects are vulnerable to large problems. [3]

II. Phases of SDLC
Software is build to solve problem and make it easy to deal

with. Software is developed in many phases and in order to

develop large and complex software, these phases are splitted

into various activities and further activities into multiple steps

for simplicity.

 Raj Kumari Punjab University

 Chandigarh, India

Heena Punjab University

Chandigarh, India

Phases for developing software system are:

 Figure 1. [3]

Strengths and Weaknesses of SDLC:

Strengths Weakness

Control : High Development time: High

Description: Detailed steps. Development Cost: High

Documentation: Well defined. Rigidity: Limited user input

Monitoring: Ability to monitor large

projects.

Rework: If error occur in

early stages of the project,

rework is required.

TABLE1[4]

 III. HEAVYWEIGHT METHODOLOGIES
Heavyweight methodologies are the traditional way of

developing software and are also known as traditional

methodologies. They are process oriented and follow

predictive approach with well known requirements and clearly

defined milestones. Heavyweight methods depend greatly on

documentation with comprehensive upfront planning in order

to succeed. They are pessimistic to changes; hence they are

expensive in terms of refactoring cost. These methodologies

deal with large project size and requires large team size.[5]

These methodologies include Waterfall model, Prototype

model Spiral model, Incremental model, Rational Unified

Process and various other models.

A. Waterfall Model

Waterfall model is one of the earliest and most common

life cycle models. It was first put forth by Winston Royce in

1970 in one of his articles. It is also known as sequential life

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

2

cycle model because model develops systematically from one

phase to other in sequence.

It consists of basically following phases:

I. Requirement

II. Design

III. Implementation

IV. Verification

V. Maintenance

 Figure 2 [6]

 Brief description of phases:

I) Requirements: This is the first phase of the model where

requirements are gathered on the basis of which software is

developed. This phase indicate for what purpose software is

developed.

II) Design: This phase starts on the completion of first phase. It

includes basic design and technical design. Software plan is

developed and functions of each part are decided.

III) Implementation: Source code is written in this phase.

IV) Verification and Integration: In this phase, whole design

is checked against functionality. Errors are discovered in this

phase and removed. Error free modules are integrated to form a

system.

 V) Maintenance: This phase ensures that software

developed will work as desired. [6]

 Advantages of waterfall model are:

1) High documentation: As documentation is produced

at every stage, thus making understanding of product

design easier.
2) Simple implementation: Due to its sequential nature

its implementation is easy.
3) Resources: Minimum numbers of resources are

required for its implementation.

 4) Milestones: Each stage has well defined deliverables

and milestones. So management is easy.[7]

 Disadvantages of waterfall model are:

1) Low guarantee of success.

2) Low user involvement- users are involved only at the

beginning.

3) No working version is developed until final stage gets

completed.

4) Inflexible: Difficult to slot in changes if required.

Its comparison with other models:.
Models/Fe

atures

Waterfall Increment

al

Prototy

pe

Spiral RUP

Client
involvemen

t

Only at
beginning

Intermediat
e

High High At
beginning

and at last

stage

Requireme

nt

specificatio

n

Beginning Beginning Frequent

ly

Changed

Beginnin

g

Beginning

Requireme

nt

understandi
ng

Well

understood

Well

understood

Not well

understo

od

Well

understo

od

Difficult to

understand

Project Size Works well

for smaller
projects

Small

projects

Large

projects

Good for

large and
mission

critical

projects

Not suitable

for small
projects

Simplicity Simple Intermediat
e

Complex Complex Simple And
Clear

Documenta

tion

Vital Yes Weak Yes Yes

Time
framework

Long Very Long Short Depends
upon

project

Short time
frame

Flexibility Inflexible Less
Flexible

Highly
Flexible

Flexible Substantial

Guarantee

Of

accomplish
ment

Less High Good High Not

Guaranteed

Reusability Limited Yes Weak Yes Supports

reusability
of existing

classes

Risk

Involvemen
t

High Manageabl

e

Low Low Critical

risks in
early stages

Maintenanc

e

Least

Promotes

maintainab
ility

Regular

maintena
nce

Usual Easily

maintained

Changes

incorporate

d

Difficult Easy Easy Easy Easy

Table 2[3]

IV. Lightweight Methodologies
Lightweight software development methods were introduced in

the mid-1990s as a reaction in opposition to heavyweight

methods. These are now typically referred to as agile

methodologies, after the Agile Manifesto published in 2001.

These methodologies are based upon iterative and incremental

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

3

development methods. It emphasizes on customer satisfaction

through continuous delivery of functional software It promotes

adaptive planning, evolutionary development and delivery,

follows iterative approach, and has few rules to follow as in

contrast to heavyweight methodologies.

These methodologies include Feature Driven Development

(FDD), Scrum, Extreme Programming (XP), Crystal Clear and

various others.[8]

A. Feature Driven Development
Feature Driven Development is an agile software development

methodology by Peter Coad and Jeff De Luca. Main idea is to

deliver substantial, working software repetitively in a well-

timed manner.

Phases of Feature Driven Development:

It consists of five phases:

1) Developing an overall model.

2) Build a feature list.

3) Plan by feature.

4) Design by feature.

5) Build by feature.

Brief description of phases:

1) Developing overall model: After having an

understanding of needed business functionality,

domain expertise, and overall scope of the project,

project starts with walkthroughs. Detailed

walkthrough of each domain is carried out, hence

producing models overall design.

2) Build a feature List: List of features is identified on

the basis of the information gathered in first phase.

This Phase can also be well thought-out to be the

functional decomposition of the Domain Model

obtained from Phase 1.This can be done by

decomposing into subject areas and further these

subject areas consist of business activities which

characterizes the features.

3) Plan by Feature: Development plan is produced on

the completion of features list. Feature sets are

ordered on basis of priority and assigned to chief

programmers. Schedule and major milestones are set

for features.

4) Design by feature: Class owners form feature teams

that handle small group of features. Overall model is

refined by working out on the sequence diagrams of

features. Design inspection is also done in this phase.

5) Build by Feature: In this phase activity to produce

complete feature is produced. Actual code of classes

is developed by their class owners. Classes are

migrated to the build after a successful code

inspection.[8]

 Advantages of Feature Driven Development are:

1) Customer Satisfaction: Here highest priority is to

satisfy the customer through early and constant

delivery of valuable software.

2) Easy monitoring: Parking lot charts and Feature

Complete charts are used for progress tracking thus

making it easy.

3) Inbuilt tools: Inbuilt tools are helpful in effective

measuring and reporting of progress for

management.

4) Less Overhead: Feature team is highly effective

keeping less communication channels thus avoiding

high overhead.[9]

Disadvantages of Feature Driven Development are:

1) FDD relies heavily on inspections to ensure high

quality of designs and code.

2) It is not suitable for projects where requirements

changes frequently.

Comparison with Extreme programming(XP):
Models/Features FDD XP

User Requirements Critical part Minimum effort

required

Code Documentation Yes No

Tools Management tools

required

No special tools

Implemented Features Users stories

Use for projects With stable
requirements

Frequently changing
requirements

Development team Forms team hierarchy No hierarchy

Team size for Iteration Small volatile team Whole team

Design stage Formal Not Formal

Refactoring Discourages Promotes

Progress tracking precise Not exact

 Table 3[10]

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

4

 Conclusion
Various SDLC models are available today such as V

model, RAD, Agile each with their own advantages and

disadvantages. This paper explained waterfall model and its

comparison with incremental model, prototype model, spiral

model and RUP. In this paper Feature Driven Development

model was studied and it was found that it was suitable for

projects with suitable requirements opposite to XP.Different

models are used by different organizations depending upon

their needs.

References
 [1] Raymond Lewallen - CodeBetter.Com - Stuff you

 need to Code Better! Published 08-01-2008.

[2]Tobin J Lehman, Akhilesh Sharma , “Software

Development as a service: Agile Experiences”, in

annual SRII Global Conference (2011).

[3] Ms. Shikha maheshwari1 Prof.Dinesh Ch. Jain,.A

Comparative Analysis of Different types of Models

in Software Development Life Cycle,IJARCSSE,
Volume 2, Issue 5, May 2012.

 [4] http://www.waterfall-model.com/sdlc

 [5] Sandrine Balbo and Ali Khan ,”A Tale Of Two

 Methodologies: Heavyweight Versus Agile”

 [6] waterfall-model.com

 [7] Ruchika, Shaweta ,”A comparative study of software

 development models.”

 [8] wikipedia.org

[9]www.step10.com/SoftwareProcess/FeatureDrivenDev

elopment/FDDPractices.html

[10]Serguei Khramtchenko,”Comparing eXtreme

Programming and Feature Driven Development in

academic and regulated environments” Harvard

University ,May17,2004

Author:

Heena is student at University of Institute of Engineering

and Technology, Punjab University,Chandigarh,India

Email: heenachugh26@gmail.com

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

