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Abstract: In this paper particle swarm 

optimization(PSO)has been applied for the design of the  

optimal robust controllers for third order systems . The 

controller design problem is posed as constrained 

nonlinear optimization problem. The parameters of the 

chosen controller are obtained solving the nonlinear 

constrained optimization problem.The performance index 

which has been used in the design is integral square 

error(ISE).The constraints are frequency domain 

performances related with robust stability .  
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     I. INTRODUCTION 

There are model uncertainties present in a dynamical 

system or plant. Due to these model uncertainties there is a 

need to design robust controller. Robust controller provides 

robustness in the face of uncertainties [1]. Recently, H∞-

control techniques have found extensive applications for 

the design of robust controllers [2]-[3]. These techniques 

make use of H∞-norm and robustness of the system is 

achieved in terms of stability and performance. The main 

disadvantage of the design techniques based on H∞- theory 

is that the order of the controller is high. The parameter 

optimization techniques help in order reduction. Parameter 

optimization methods start with controller structures that 

are motivated by the ideas from classical, modern or other 

techniques. What is meant by the controller structure is a 

system model with one or more parameter values that can 

be adjusted. The next step in a parameter optimization 

method is to select an objective function or performance 

index that gives the quality of performance. 

After a controller structure, an objective function and some 

constraints have been specified, the problem can be posed 

as non-linear optimization problem which can be solved to 

get the parameters of the controller [4]. The objective 

function may consist of time domain and/or frequency 

domain performances expected from the system.  
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In general, this objective function is non-linear, non-

differentiable, discontinuous and non-convex in nature. The 

optimization methods based on calculus will not work. 

Only search methods can be used. The classical methods 

use nominal model of plant.The robustness of the control 

loop is indicated by phase margin and gain margin. 

Evolutionary Algorithms guarantee to provide global or 

near global optimal solution [5]-[9].  
 

 In this paper, the objective function which has been used in 

the optimization is indicative of the time domain 

performance of the system, namely, integral  square (ISE)  

error .The constraints which have been imposed in the 

optimization are related with the robust stability. 

 

                 2. OPTIMAL ROBUST CONTROL 

While designing the robust controller, the model 

uncertainty of the plant is explicitly considered, two kinds 

of model uncertainties: structured and non-structured. 

Structured model uncertainty or parametric model 

uncertainty is caused by the parametric modifications of the 

plant and can be described by the approaches, such as, 

interval methods [10]-[11]. The causes of non-structured 

model uncertainty are, usually, non-linearities  of the plant 

or modifications of the operating point. This type of the 

model uncertainties can be represented using H∞-theory. 

The classical methods of the controller design use a  

nominal model of the plant. The classical measures of the 

robustness of the system are gain and phase margins. In the 

robust controller design methods based on the H∞-theory, a 

family of the models of the plant is used. A nominal model 

of the plant and model uncertainty are considered. It is 

necessary to guarantee the stability of the feedback control 

system taking into account the model uncertainty. The 

conditions of the robust stability described using H∞-norm. 

A. Condition for Robust Stability 

Consider the control system shown in the Fig.1. The 

controller is described by means of a transfer function with 

fixed structure C(s,k). The vector of the controller 

parameters; k, is 

 k = [k1, k2……, km]T                                     (1) 
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Fig.1. Control system composed of a controller with fixed       

          structure and a plant with model uncertainty 

 

The plant is described by a multiplicative model according 

to equation (2). By using the multiplicative model, the 

transfer function of the real (perturbed) plant G(s) is 

described by the following [3]: 

          G(s)=Go(s) (1+(s)Wm (s))                       (2) 

Where  

G0 (s) is nominal transfer function, 

 (s) is perturbation in the plant and 

Wm(s) is weighting function that represents an upper bound 

of the multiplicative uncertainty.  

 It is assumed that the model uncertainty, Wm(s), is stable 

and bounded, and that no unstable poles of Go(s) are 

canceled in forming G(s). 

 

The condition for robust stability is stated as follows [3]: 

If the nominal control system ((s)=0) is stable with the 

controller C(s,k), it guarantees robust stability of the 

control system, if and only if the following condition is 

satisfied: 

                                   (3) 

  

This condition for robust stability represents only a 

sufficient condition. So, the robust stability of a control 

system can be evaluated by means of the H - norm. 

 

Generally, the multiplicative model is used. If the plant is 

described by an additive model, it can be easily' converted 

into a multiplicative model. This paper will consider the 

multiplicative model. 

    3. OPTIMAL ROBUST CONTROLLER  DESIGN                  

In Fig.1, for the nominal case, the tracking error signal is 

given by  
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The performance index ,J, is given by 
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It can be described in the frequency domain of the Parseval 

theorem]:  
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The reference signal (set point) is an unit step function 

given by: 
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The error E(s) can be expressed then as a rational function: 
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In this case, the degree m of the polynomial D(s) must be 

smaller than the degree n of the polynominal A(s), so that 

the squared error J in equation (6) has a finite value. 

Introducing the error E(s) from equation (8) into equation 

(6) results in the following 
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In design of optimal robust controller, both the tracking 

performance and robust stability are considered. The 

controller design is formulated as constrained optimization 

problem as  follows: 

 )(min kJ n
k

 subject to 1)),((max 5.0 k


 

The objective of the minimization is to find out the vector 

of controller parameters k so that the value of the 

performance index )(kJ n  is minimum and the condition 

of robust   stability 1)),((max 5.0

),0[



k


    is satisfied. 

          4. PARTICLE SWARM OPTIMIZATION 

It is a population based stochastic optimization technique 

developed in 1995 [12],from the  simulation  of  social 

behavior of bird flocking or fish schooling. PSO has been 

found to be simple, effective and robust  in solving 

problems with nonlinearity, non-differentiability and 

multidimensional optimization [13]. In PSO, each particle 

represents a candidate solution to the optimization problem. 

At the beginning, each particle spans randomly through the 

problem space and updates its velocity and position with 

the two best values. The first best value, called pbest is the 

best solution achieved so for. Another value, called gbest is 

+ 
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the Global best solution obtained so far by any particle in 

the swarm. At each interaction, each particle moves to 

pbest  and gbest locations. The cost function evaluates the 

performance of particles to determine whether the best 

solution is achieved. In the present thesis work, the PSO is 

used to solve the constrained optimization problem.  

In PSO algorithms each particle moves with an 

adaptable velocity within the regions of decision space and 

retains a memory of the best position it ever encountered. 

The best position ever attained by each particle of the 

swarm is communicated to all other particles.  The updating 

equations of the velocity and position are given as follows:- 

A particle position is given by xi(k) 

A particle velocity is given by vi(k) 

A best "remembered" individual particle position is given 

by pi(k) 

A best "remembered" swarm position is given by pg(k) 

Cognitive and social parameters referred to as acceleration 

constants are given by c1 and c2.Random numbers between 

0 and 1 are r1 and r2.A inertia weight is given by w.Pi refers 

who best position found by particles. Velocity of Individual 

particle is updated as follows:   

vi (k+1) =wvi (k) + r1c1[ pi(k) – xi(k) ] + r2c2 [ pg(k) – xi(k) ] 

Position of individual particle is updated as follows: 

xi(k+1) =xi(k) +vi(k+1)  

The details of the PSO algorithm are given in flowchart. 

. 

        Fig.2. Flowchart of the PSO algorithm 

  

               5. DESIGN EXAMPLE 

To illustrate the method, a detailed design example is 

presented. Consider the control system shown in the Fig. 

4.1The model of plant taken from [14] is described by the 

following transfer function:     

  

      

                                (9)  

 

R(s)     E(s)                     U(s)                       Y(s) 

 

       Fig.3. Control system with uncertain plant  

The controller structure C(s,k) is chosen in the following 

form [14] 

   

                             (10) 

The vector k of controller parameters is given by k = [k1, k2, 

k3, k4, k5]
T  which is to be obtained solving the optimization 

problem. 

The multiplicative uncertainty Wm(s) is taken as [14]: 

                                                (11) 

        

The error signal E(s), assuming the input signal is a unit 

step, is evaluated as follows 

:                                      (12)    

    

The squared error J5(k) = E' E is obtained by calculating 

error E due to step input at each instant from 1 to 10 

seconds in the interval of .05 sec. This squared error is to 

be minimized under the robust stability constraint given by 

the equation (3). The H norm in equation (3) is calculated 

using MATLAB function normhinf.    Bode plots of system 

without controller are shown in the Fig.4.2. The gain and 

phase margins are infinity and -24.4 deg respectively.                                                                                                                                 
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    Fig.4. Bode plots of the system without controller  
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      Fig.5. Step response of the plant without controller  

Performance index J5 (k) is to be minimized is taken as 

ISE.  In writing m-file the integral has been taken as 

summation over 201 points. Time is vector consisting of 

time instants from 0 to 10 sec in the interval of 0.05 second. 

J5(k) has been minimized under the constraint of robust 

stability given by equation (3).   The following PSO 

parameters were used in running the PSO 

TABLE 1 OPTIONS SETTINGS REQUIRED AS INPUT    

               FOR PSO                                         

Sr.No. 

 

Options 

 

Values 

 

1 Number of particles in swarm for 

each variable to be optimized 

25 

2 Cognitive acceleration coefficient 2.8 

3 

 

Social acceleration coefficient 1.3 

4 Maximum number of iterations 2500 

5 

 

Maximum duration of optimization 2500 

6 

 

Maximum number of function 

evaluations 

2500 

7 

 

Maximum difference between best 

and worst function 

 

 

 evaluation in simplex 

 

1e-6 

8 

 

Maximum difference between the 

coordinates of the vertices 

 

1e-3 The controller parameter vector was searched in following 

bounds: 

k1= [10,1000]; k2 = [1,100]; k3 [1,100]; k4 = [0,1]; k5 = 

[0.1,10]. 

The PSO algorithm converged with minimum value of 

J5(k
*)=3.5131 and optimal solution vector k* = [999.99, 

14.5065, 14.5146, 1, .5387]T 

Bode plots of system with designed controller are shown in 

the Fig.6. The gain and phase margins are 9.14 dB and 49.6 

deg respectively. 
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      Fig.6. Bode plots of system with the designed controller  

The closed loop step response of the feedback control 

system shown in the Fig. 3 with designed controller is 

shown in Fig. 7. 
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           Fig.7. Step response of the controlled plant without 

                      uncertainty  

The closed loop step response of the feedback control 

system shown in the Fig.3 with uncertainty given in 

equation (11)  with designed controller is shown in Fig. 8. 
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Fig.8. Step response of the controlled plant with uncertainty  
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The performance of the control system shown in Fig.3  

with designed controller is compared with respect to 

closed-loop step response with and without uncertainty. 

The tracking behavior of the control system  with and 

without uncertainty is shown in Fig. 9. 
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Fig.9. Step response of the controlled plant with and without      

          uncertainty 

           

There is no difference between the two responses. The 

designed controller gives satisfactory response in the face 

of plant uncertainty. 
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                 Fig.10. Control signal  

 

The following time domain performances have been 

achieved: 

6. CONCLUSIONS 

In this paper a method is presented to design an optimal 

robust controller with fixed structure, Known in the 

literature as the mixed H2/H∞ problem. The design problem 

is formulated as an optimization problem with constraint of 

type H∞ norm. The tracking performance of the closed loop 

system with proposed method has been found. Therefore 

the proposed control algorithms are shown to be effective. 

In the future, this control method can be further extended 

and applied to multivariable system.  
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