
International Journal of Advances in Computer Networks and its Security

408

Abstract
There are many ways to look at a problem to be solved using a

software-based solution. One widely used approach to problem

solving takes an object-oriented viewpoint. The definition of

objects encompasses a description of attributes, behaviors,

operations, and messages. An object encapsulates both data and

the processing that is applied to the data. This important

characteristic enables classes of objects to be built and inherently

leads to libraries of reusable classes and objects. Because reuse is

a critically important attribute of modern software engineering,

the object-oriented paradigm is attractive to many software

development organizations.

Index Terms ─ Object oriented, Software development

productivity, Classes.

I. INTRODUCTION

Object oriented Software Engineering (OOSE) is an object

modeling language and methodology. The approach of using

object – oriented techniques for designing a system is referred

to as object – oriented design. Object – oriented development

approaches are best suited to projects that will implement

systems using emerging object technologies to construct,

manage, and assemble those objects into useful computer

applications. Object oriented design is the continuation of

object- oriented analysis, continuing to center the development

focus on object modeling techniques. Object-oriented software

engineering follows the same steps as conventional

approaches. Analysis identifies objects and classes that are

relevant to the problem domain; design provides the

architecture, interface, and component- level detail;

implementation (using an object-oriented language) transforms

design into code; and testing exercises the object-oriented

architecture, interfaces and components[2].

Object technologies lead to reuse, and reuse (of program

components) leads to faster software development and higher-

quality programs. Object-oriented software is easier to

maintain because its structure is inherently decoupled. This

leads to fewer side effects when changes have to be made and

less frustration for the software engineer and the customer. In

addition, object-oriented systems are easier to adapt and easier

to scale (i.e., large systems can be created by assembling

reusable subsystems).

II. MANAGEMENT OF OBJECT-ORIENTED

SOFTWARE

Software project management can be subdivided into the

following activities:

1. Establishing a common process framework for a project.

2. Using the framework and historical metrics to develop effort

and time estimates.

3. Establishing deliverables and milestones that will enable

progress to be measured.

4. Defining checkpoints for risk management, quality

assurance, and control.

5. Managing the changes that invariably occur as the project

progresses.

6. Tracking, monitoring, and controlling progress[3,6].

A. The Common Process Framework for OO

A common process framework defines an organization’s

approach to software engineering. It identifies the paradigm

that is applied to build and maintain software and the tasks,

milestones, and deliverables that will be required. It

establishes the degree of rigor with which different kinds of

projects will be approached. The CPF is always adaptable so it

can meet the individual needs of a project team. This is its

single most important characteristic. As we noted earlier in this

chapter, object-oriented software engineering applies a process

model that encourages iterative development. That is, OO

software evolves through a number of cycles. The common

process framework that is used to manage an OO project must

be evolutionary in nature[1].

In essence the recursive/parallel model works in the following

way:

• Do enough analysis to isolate major problem classes and

connections.

• Do a little design to determine whether the classes and

connections can be implemented in a practical way.

• Extract reusable objects from a library to build a rough

prototype.

• Conduct some tests to uncover errors in the prototype.

• Get customer feedback on the prototype.

• Modify the analysis model based on what you’ve learned

from the prototype, from doing design, and from customer

feedback.

TRACKING AND CONTROLLING OBJECT ORIENTED SOFTWARE

PROGRESS

Shalini Chawla
1
, Arun bakshi

2

1
 Shalini Chawla, Northern India Engineering College, Delhi, India.

2
Arun Bakshi,Gitarattan International Business School, Delhi, India.

(er.shalinichawla
1
, akshayabakshi

2)
@gmail.com

International Journal of Advances in Computer Networks and its Security

409

• Refine the design to accommodate your changes.

• Code special objects (that are not available from the library).

• Assemble a new prototype using objects from the library and

the new objects you’ve created.

• Conduct some tests to uncover errors in the prototype.

• Get customer feedback on the prototype.

This approach continues until the prototype evolves into a

production application.

B. OO Project Metrics and Estimation

Conventional software project estimation techniques require

estimates of lines-of code (LOC) or function points (FP) as the

primary driver for estimation. Because an overriding goal for

OO projects should be reuse, LOC estimates make little sense.

FP estimates can be used effectively because the information

domain counts that are required are readily obtainable from the

problem statement. FP analysis may provide value for

estimating OO projects, but the FP measure does not provide

enough granularity for the schedule and effort adjustments that

are required as we iterate through the recursive/parallel

paradigm[1,3].

The set of project metrics are as follows:

Number of scenario scripts: A scenario script (analogous to

use-cases) is a detailed sequence of steps that describe the

interaction between the user and the application. Each script is

organized into triplets of the form

{initiator, action, participant}

where initiator is the object that requests some service (that

initiates a message); action is the result of the request; and

participant is the server object that satisfies the request. The

number of scenario scripts is directly correlated to the size of

the application and to the number of test cases that must be

developed to exercise the system once it is constructed.

Number of key classes: Key classes are the “highly

independent components” that are defined early in OOA.

Because key classes are central to the problem domain, the

number of such classes is an indication of the amount of effort

required to develop the software and also an indication of

the potential amount of reuse to be applied during system

development.

Number of support classes: Support classes are required to

implement the system but are not immediately related to the

problem domain. Examples might be GUI classes, database

access and manipulation classes, and computation classes. In

addition, support classes can be developed for each of the key

classes. Support classes are defined iteratively throughout the

recursive/ parallel process. The number of support classes is

an indication of the amount of effort required to develop the

software and also an indication of the potential amount of

reuse to be applied during system development.

Average number of support classes per key class: In general,

key classes are known early in the project. Support classes are

defined throughout. If the average number of support classes

per key class were known for a given problem domain,

estimating (based on total number of classes) would be much

simplified. Applications with a GUI have between two and

three times the number of support classes as key classes. Non-

GUI applications have between one and two times the number

of support classes as key classes.

Number of subsystems: A subsystem is an aggregation of

classes that support a function that is visible to the end-user of

a system. Once subsystems are identified, it is easier to lay out

a reasonable schedule in which work on subsystems is

partitioned among project staff[5,4].

C. An OO Estimating and Scheduling Approach

The approach is as follows:

1. Develop estimates using effort decomposition, FP analysis,

and any other method that is applicable for conventional

applications.

2. Using OOA, develop scenario scripts (use-cases) and

determine a count. Recognize that the number of scenario

scripts may change as the project progresses.

3. Using OOA, determine the number of key classes.

4. Categorize the type of interface for the application and

develop a multiplier for support classes:

Interface type Multiplier

Multiply the number of key classes (step 3) by the multiplier to

obtain an estimate for the number of support classes.

5. Multiply the total number of classes (key + support) by the

average number of work-units per class. There are 15 to 20

person-days per class.

6. Cross check the class-based estimate by multiplying the

average number of work-units per scenario script.

Scheduling for object-oriented projects is complicated by the

iterative nature of the process framework. A set of metrics that

may assist during project scheduling are:

Number of major iterations: Thinking back to the spiral

model, a major iteration would correspond to one 360º

traversal of the spiral. The recursive/parallel process model

would spawn a number of mini-spirals (localized iterations)

that occur as the major iteration progresses. Lorenz and Kidd

suggest that iterations of between 2.5 and 4 months in length

are easiest to track and manage.

Number of completed contracts: A contract is “a group of

related public responsibilities that are provided by subsystems

and classes to their clients”. A contract is an excellent

milestone and at least one contract should be associated with

each project iteration. A project manager can use completed

contracts as a good indicator of progress on an OO project.

D. Tracking Progress for an OO Project

Although the recursive/parallel process model is the best

framework for an OO project, task parallelism makes project

tracking difficult[2]. The project manager can have difficulty

establishing meaningful milestones for an OO project because

a number of different things are happening at once. In general,

the following major milestones can be considered “completed”

when the criteria noted have been met.

Technical milestone: OO analysis completed

• All classes and the class hierarchy have been defined and

reviewed.

International Journal of Advances in Computer Networks and its Security

410

• Class attributes and operations associated with a class have

been defined and reviewed.

• Class relationships have been established and reviewed.

• A behavioral model has been created and reviewed.

• Reusable classes have been noted.

Technical milestone: OO design completed

• The set of subsystems has been defined and reviewed.

• Classes are allocated to subsystems and reviewed.

• Task allocation has been established and reviewed.

• Responsibilities and collaborations have been identified.

• Attributes and operations have been designed and reviewed.

• The messaging model has been created and reviewed.

Technical milestone: OO programming completed

• Each new class has been implemented in code from the

design model.

• Extracted classes (from a reuse library) have been

implemented.

• Prototype or increment has been built.

Technical milestone: OO testing

• The correctness and completeness of OO analysis and design

models has been reviewed.

• A class-responsibility-collaboration network has been

developed and reviewed.

• Test cases are designed and class-level tests have been

conducted for each class.

• Test cases are designed and cluster testing is completed and

the classes are integrated.

• System level tests have been completed.

III. DOMAIN ANALYSIS

This activity, called domain analysis, is performed when an

organization wants to create a library of reusable classes

(components) that will be broadly applicable to an entire

category of applications.

With the reusability and domain analysis it is highly likely that

1. The project will be finished much earlier.

2. The cost of product will be significantly lower

3. The product produced will have fewer delivered defects.

A. The Domain Analysis Process

Software domain analysis is the identification, analysis, and

specification of common requirements from a specific

application domain, typically for reuse on multiple projects

within that application domain.

The goal of domain analysis is straightforward: to find or

create those classes that are broadly applicable, so that they

may be reused.

Define the domain to be investigated:

To accomplish this, the analyst must first isolate the business

area, system type, or product category of interest.

Next, both OO and non-OO “items” must be extracted. OO

items includespecifications, designs, and code for existing OO

application classes; support

classes (e.g., GUI classes or database access classes);

commercial off-the-shelf (COTS) component libraries that are

relevant to the domain; and test cases. Non-OO items

encompass policies, procedures, plans, standards, and

guidelines; parts of existing non-OO applications (including

specification, design, and test information); metrics; and

COTS non-OO software.

Categorize the items extracted from the domain: The items are

organized into categories and the general defining

characteristics of the category are defined. A classification

scheme for the categories is proposed and naming conventions

for each item are defined. When appropriate, classification

hierarchies are established.

Collect a representative sample of applications in the domain:

To accomplish this activity, the analyst must ensure that the

application in question has items that fit into the categories

that have already been defined.

During the early stages of use of object-technologies, a

software organization will have few if any OO applications.

Therefore, the domain analyst must “identify the conceptual

(as opposed to physical) objects in each application.”

Analyze each application in the sample: The following steps

are followed by the analyst:

• Identify candidate reusable objects.

• Indicate the reasons that the object has been identified for

reuse

.• Define adaptations to the object that may also be reusable.

• Estimate the percentage of applications in the domain that

might make reuse of the object.

• Identify the objects by name and use configuration

management techniques to control them. In addition, once the

objects have been defined, the analyst should estimate what

percentage of a typical application could be constructed using

the reusable objects.

IV. DESIGN FOR OBJECT ORIENTED SYSTEM

The four layers of the OO design pyramid are:

 The subsystem layer

 The class and object layer

 The message layer

 The responsibilities layer

Figure1: Object Oriented System Design

The subsystem layer contains a representation of each of the

subsystems that enable the software to achieve its customer-

defined requirements and to implement the technical

infrastructure that supports customer requirements.

The class and object layer contains the class hierarchies that

enable the system to be created using generalizations and

increasingly more targeted specializations. This layer also

contains representations of each object.

International Journal of Advances in Computer Networks and its Security

411

The message layer contains the design details that enable each

object to communicate with its collaborators. This layer

establishes the external and internal interfaces for the system.

The responsibilities layer contains the data structure and

algorithmic design for all attributes and operations for each

object.

CONCLUSIONS AND FUTURE DIRECTIONS

Finally we conclude that very little theory exists for swarm-

based systems and no robust systems should be deployed

before we understand fundamental properties of stigmergic

systems.

This section also deals with potential future research that

might facilitate the need for implementation of stigmergic

principles for various complex engineering problems.
Apart from the highlighted methodological problems, the

domain of SI-based routing lacks of contributions falling in the

two opposite areas of mathematical modeling and real-world

implementations. From the one hand, simulation-based studies

should be complemented with mathematical models, that allow

to study very large systems and general algorithm properties,

and can favor fair comparisons among the algorithms. From

the other hand, simulation should be just the first step towards

hardware implementations. Experiments with real test beds

force the experimenter to face a wide set of problems and

challenges that can hardly be replicated in simulation.

REFERENCES

1. The Unified Modeling Language User Guide by Grady

Booch, James Rumbaugh, Ivar Jacobson.

 2. Applying Use Cases – A Practical Guide by Geri

Schneider and Jason P. Winters

3. Object Solutions – Managing the Object – Oriented

Project by Grady Booch.

4. Surviving Object – Oriented Projects – A Manager

Guide by Alistair Cockburn

5. Object Oriented Software Engineering – A Use Case

Driven Approach by Ivar Jacobson, Magnus Christerson,

Patrik Jonsson, and Gunnar Overgaard.

6. Designing Object – Oriented User Interfaces by Dave

Collins.

