
International Journal of Advances in Computer Networks and its Security

405

Priority based LZW algorithm

Amit Jain

Department of Computer

Engineering

NIT Kurukshetra ,India

amit014@gmail.com

Priyanka

 Department of Computer

Engineering

 NIT Kurukshetra ,India

mannpammy@gmail.com

Vinay Goyal

Department of Computer Science

JIET,Jind,India

vinayeq@yahoo.com

Abstract— LZW is a popular and effective data compression

algorithm for last many years. In this paper we proposed

modified LZW on the basis of priority bit, termed as PLZW

(Priority Based LZW). This replacement strategy helps us to

avoid frequent flushing of the dictionary in LZW and increase in

dictionary size.

Keywords— Data Compression, LZW, Priority

I. INTRODUCTION

Data compression Algorithms/techniques can be

divided into two categories - Lossless data compression and

Lossy data compression. In Lossless data compression,

decompressed data is identical to the original uncompressed

data. This type of compression scheme is adopted when

storing software, text compression, spreadsheets, and word

processing files. Lossy data compression is used, when a little

loss of data/information is acceptable to user. Normally this

technique is used for graphics images and digitized voice.

In their landmark papers in 1977 and 1978, Ziv and

Lempel proposed two universal lossless data compression

algorithms, which are called LZ77 and LZ78, respectively [1,

2]. Since then, many variants have been suggested such as

Lempel-Ziv-Welch (LZW) [3]. Among the variants of the

original LZ78, LZW designed by Welch in 1984, is perhaps

the most famous and popular modification.LZW is a

Directory-Based Lossless Data Compression Algorithm.

Initially, all the alphabets are put into dictionary (0-256) . The

LZW algorithm starts with a dictionary containing entries for

each character in the alphabet. The algorithm scans the input

matching it with entries in the dictionary. The matching is

finished, whenever, we read from the input a string Y, not in

the dictionary, such that Y=X.a, where X is a string already in

the dictionary, "a" is a character and "." denotes the

concatenation operation. The compression algorithm then

sends the code for X (an index into the dictionary table) and

inserts Y into the dictionary. The string Y is called a character

extension of X. The encoding of the input continues from the

character "a" that follows X. The decoder builds an identical

dictionary to the one built by the encoder.

2. PROBLEMS WITH LZW ALGORITHM [5]

1. LZW algorithm works extremely well with repeated

data streams or strings of English text, but if input data

contain non repeated strings then dictionary get filled

up frequently and dictionary is discarded very often,

leading to degraded performance.

2. The limit imposed in the original LZW implementation

by fact that once 4k dictionary is complete, no more

strings can be added. Defining larger dictionary of

course results in greater string capacity, but longer

pointers reduce compression.

3. One puzzling thing about LZW is why the first 255

entries in 4k buffer are initialized to single character.

There would be no point in setting pointers to single

byte values. Since the pointers would be longer than

byte values. 0-255 entries are reserved for standard

character set. So initially when bytes appear in the

encoded output, there is no compression rather single

byte values are translated to 12-bit code size. If smaller

text files containing large entries of the standard

character set, then expansion of the data take place in

spite of compression by assignment of 12 bit index to

8 bits data value and thus more bits are transferred over

the communication channel. II.

3. PROPOSED SCHEME

Replacement strategy works good when we limited

resources either in terms of time and space.We need a

replacement strategy when dictionary filled completely and

there is no space to add a new string in dictionary then we

have following options:-

(1) Discard whole dictionary and start with a new one.

(2) Constantly monitor compression ratio, if it falls

below a certain level, increase code size by one bit.

(3) Apply some replacement strategy to discard entries

and provide space to the new one.

In this paper we use last strategy to further modify the

LZW as first strategy is not very much practical and

second strategy increases the dictionary size. So it is

advantageous to replace old entry with new one. So our

proposed scheme tries to remove less important dictionary

entry at every stage of compression.

406

Fig 1

A. Replacement Based On priority

In this algorithm, we use a priority bit with dictionary

entries. These bits can be either zero or one.Initially all the

entry are given priority bits ‘0’. As a dictionary entry used

more than one time it update priority bit from ‘0’ to

‘1’.When our dictionary is full ,there is no space to add

new entry ,we start scanning of dictionary from first entry.

The entry in dictionary with priority bit ‘0’ is deleted and

new entry can be added to dictionary .The following steps

will be taken to implement algorithm

Algorithm:

(1) Input first character from file and store it as STRING

(2) Input next character from file.

(3) Check whether this STRING+ character is in the

dictionary. If yes then store it in STRING and go to

step 2.If No then check if the dictionary is full.

(4) If dictionary is full then check dictionary for priority

bit ‘0’,delete this entry and output the code for string.

Add entry of STRING +char in table and set priority

‘1’and store char in STRING.

(5) If dictionary is not full then output the code for

string. Add entry of STRING +char in table and set

priority ‘1’and store char in STRING.

(6) When EOF reach output the code for file.

The main benefit of this algorithm is that it removes less

important entry from the dictionary .The flow chart is shown

in figure 1

Advantages

The main advantage of using this algorithm is we need not to

expand the size of dictionary. When dictionary filled

completely we can replace less important entries with a new

entries with better priorities. This helps us to restrict the

dictionary size with in a limit and use less memory.

4. CONCLUSION

After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the Save
As command, and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file. You are now ready to style your paper; use
the scroll down window on the left of the MS Word
Formatting toolbar.

407

References
[1] J.Ziv, and A Lempel, "A universal algorithm for sequential data

compression," IEEE Trans. on Information Theory, vol 23, pp. 337-

343,May 1977.
[2] J. Ziv and A. Lempel, "Compression of individual sequences via variable

length coding," IEEE Trans. Inf Theory, vol 24, pp. 530-536,1978.

[3] Terry Welch, "A technique for high performance data compression,
"IEEE Computer, vol 17, pp. 8-19, June 1984.

[4] Dwane Phillips, "LZW Data Compression, " Circuit Cellar INK – The

Computer Applications Journal, pp. 36-48, June/July 1992.

[5] Parvinder Singh, Sudhir Batra, and HR Sharma, "Evaluating the

performance of message hidden in 1 st and 2nd bit plane", WSEAS

Trans.on Information Science and Applications, issue 8, vol 2, pp. 1220-
1227,August 2005

[6] R. N. Horspool, and G. V. Cormack, "Construction word-based text

compression algorithms," in 2nd IEEE Data Compression
Conference,Snowvird, 1992.

[7] Tong Lai Yu, "Data compression for PC software distribution,Software

Practice and Experience, vol 26, pp. 1181-1195, November 1996.

