
International Journal of Advacnes in Computer Networks and its Security

255

Implementation of longitudinal redundancy check and

cyclic redundancy check algorithms using NetSim

Abstract-- Network Simulation is a comprehensive tool

for studying computer networks. NetSim features state

of the art network simulation technology, and comes

with additional offerings that enhance and quicken

learning. NetSim is an educational network simulator

and provides educators with a comprehensive and

effective means of teaching computer networks. The

software provides for network simulation across

various protocols like Ethernet, Wireless LAN. TCP /

IP, ATM and devices like routers, ATM switches.

Apart from simulation NetSim also features C / C++

/JAVA programming exercises, animated basics and

real time packet capture. NetSim provides network

performance metrics at various abstraction level such

as Network, sub-network, Node and a detailed packet

trace. NetSim features a Development environment

with a source code editor and a compiler. Model

libraries with source code are provided for user

modification. Importantly, options are not limited to

the listing as it is possible to develop any type of

protocol or device model with NetSim’s protocol

editing facilities. Error detection [2] is a technique that

enables reliable delivery of digital data over unreliable

communication channels. Many communication

channels are subject to channel noise, and thus errors

may be introduced during transmission from the

source to a receiver. Error detection techniques allow

detecting such errors, while error correction enables

reconstruction of the original data. Error detection is

the detection of errors caused by noise or other

impairments during transmission from the transmitter

to the receiver.

Key words:

AWT: Abstract Window Toolkit

CRC: Cyclic Redundancy Check

LRC: Longitudinal Redundancy Check

NetSim: Network Simulation

I. INTRODUCTION

A. Network Simulation

NetSim is Network simulation software which takes

in user inputs and provides output metrics. NetSim is a

popular tool developed by TETCOS, in association with

Indian Institute of Science, Bangalore. NetSim has also

been featured with Computer Networks and Internets V

edition by Dr. Douglas Comer, published by Prentice

Hall. NetSim provides network performance metrics at

various abstraction levels such as Network, sub-network,

Node and a detailed packet trace.

NetSim features a Development environment with a

source code editor and a compiler. Model libraries with

source code are provided for user modification.

Importantly, options are not limited to the listing as it is

possible to develop any type of protocol or device model

with NetSim’s protocol editing facilities.

B. Java Swing class hierarchy

Swing, which is an extension library to the AWT,

includes new and improved components that enhance the

look and functionality of GUIs. Swing can be used to

build Standalone swing GUI Apps as well as Servlets and

Applets. It employs model/view design architecture.

Swing being 100% Java code makes it more portable and

more flexible than AWT. Swing is built on top of AWT.

Swing is written entirely in Java, using AWT's

lightweight component support. In particular, unlike

AWT, the architecture of Swing components makes it

easy to customize both their appearance and behavior.

Components from AWT and Swing can be mixed,

allowing you to add Swing support to existing AWT-

based programs. For example, swing components such as

JSlider, JButton and JCheckbox could be used in the same

program with standard AWT labels, text fields and

scrollbars. You could subclass the existing Swing UI,

model, or change listener classes without having to

Dr.M.SIDDAPPA,

Professor & HOD of CS&E dept,

SSIT, Tumkur,

Karnataka, India.

siddappa.p@gmail.com

SOWMYA M N,

Lecturer of CS&E dept,

SSIT, Tumkur,

Karnataka, India.

sowmyamn22@rediffmail.com

RAKESH S

M.tech, 2
nd

 year, CS&E dept.

SSIT, Tumkur (D), Karnataka

(S), India

rakeshs.snb@gmail.com

International Journal of Advacnes in Computer Networks and its Security

256

reinvent the entire implementation. Swing also has the

ability to replace these objects on the fly.

The class JComponent, descended directly from

Container, is the root class for most of. Swing

components i.e. used to build a GUI. The list below

shows some of the commonly used Swing components

that are used in Java swing programs. To learn and

understand these swing programs, AWT programming

knowledge is not required.

LRC [6] is a form of redundancy check that is

applied independently to each of a parallel group of bit

streams. The data must be divided into transmission

blocks, to which the additional check data is added.

CRC [1] [6] is a single-burst-error-detecting cyclic

code and non-secure hash function designed to detect

accidental changes to digital data in computer networks. It

is characterized by specification of a so-called generator

polynomial [4], which is used as the divisor in a

polynomial long division over a finite field, taking the

input data as the dividend, and where the remainder

becomes the result.

II. PROCEDURE

A. Steps for doing LRC:

 A block of bits is organized in a table (rows and

columns).

 For example instead of sending 32 bits, we organize

them in a table made of 4 rows and 8 columns.

 We then calculate the Parity bit for each column and

create a new row of 8 bits which are the parity bits

for the whole block.

 Note that the first parity bit in the 5
th

 row is

calculated based on all the first bits.

 The second parity bit is calculated based on all the

second bits and so on..

 We then attach the 8 parity bits to the original data

and send them to the receiver.

B. Steps for doing CRC:

Steps performed by Sender:

 Get the raw frame.

 Left shift the raw frame by n bits and divide it by

divisor.

 The remainder is the CRC bit.

 Append the CRC bit to the frame and transmit.

 Steps performed by Receiver:

 Receive the frame.

 Divide it by divisor.

 Check the reminder.

III. IMPLEMENTATION

A. Concept of LRC:

 LRC is used for detecting the error in the transmitted

data bits.

 The term Redundancy here means the extra

information appended to the transmitted data bits.

This is mainly appended at the end of each data

frame transmitted. These redundancy bits are used to

check the accuracy of the received data frame [6].

 The input data is converted to Bit Format and the bits

are divided into columns of 8 bits and rows are

required (a data frame of 32-bits is converted into a

table of 8 columns and 4 rows).

 (Note: The front end design of LRC is changed due to space)

 Calculate the parity bits of each of the 8 columns and

create a new row of 8 bits, which will have the parity

bits for the whole block [3].

http://en.wikipedia.org/wiki/Cyclic_code
http://en.wikipedia.org/wiki/Cyclic_code
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Polynomial_long_division
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Dividend
http://en.wikipedia.org/wiki/Remainder
http://free-books-online.org/tag/parity-bits/
http://free-books-online.org/tag/parity-bits/
http://free-books-online.org/tag/data/

International Journal of Advacnes in Computer Networks and its Security

257

 The first parity bit values of the first column, second

parity bit value based on second column values and

so on…..

 After calculation of the 8 parity values it is attached

to the original data and sends across to the receiver.

B. Front end design of LRC:

 For designing the front end of the LRC we use

JPanel.

 We use JLabel component for creating the labels like

Mode, Parity, Input, Data, Action, Help, Sample,

User, Odd, Even, Data, Max. 8 characters, Original,

Error and Concept, Algorithm, Flowchart.

 In Mode section JRadioButton component is used

for selecting Sample mode or User mode and for

selecting Odd or Even in Parity section.

 In Input section JTextField component is used to

enter the digits and it is fixed to 8 characters and in

Data section it is used to display original data and if

any error occur during running it is also displayed.

 In Action section JButton component is used for

selecting RUN or REFRESH action.

 In Help section a hyper link is creating, when click

on this link it will display the information like

Concept, Algorithm and Flowchart of the CRC.

C. Concept of CRC:

 CRC is a type of function that takes as input a data

stream of any length and produces an output [7].

 Bit strings are treated as representation of polynomial

with co-efficient of ‘0’ and ‘1’.

 The sender and receiver must agree upon the

Generator polynomial in advance.

 The size of data must be greater than the size of the

Generator polynomial to compute the checksum [7].

 The computed checksum is appended to the

transmitting frame.

 If the receiver gets the frame it tries dividing it by

generator polynomial. If there is a remainder there

has been a transmission error else no error [8].

 The Generator polynomial for CRC-12 is given

below,

 X12+X11+X3+X2+X1+1, the binary equivalent of

CRC-12 is 1100000001111.

D. Front end design of CRC:

 For designing the front end of the CRC we use

JPanel.

 We use JLabel component for creating the labels

like Mode, Algorithm, Condition, Input, Action,

Help, Output, Sample, User, CRC-12, CRC-16,

CRC-32, CRC-CCITT, Select the file, Text file(.txt),

Max. 5000 bytes and Concept, Algorithm, Flowchart.

 In Mode section JRadioButton component is used

for selecting Sample mode or User mode and for

selecting CRC-12, CRC-16, CRC-31 and CRC-

CCITT mode in Algorithm section and for selecting

No Error and Error mode in Condition section.

 In Input section JTextField component is used for

selecting input file.

 In Input section JButton component is used for

browsing the input file in the system and in Action

section for selecting RUN or REFRESH action.

 In Help section an Hyper link is create, when click on

this link it will display the information like Concept,

Algorithm and Flowchart of the CRC.

(Note: The front end design of CRC is changed due to space)

IV. PSEUDO CODE

A. Pseudo code of LRC:

 Read the content of the input file, i.e. the input data,

type of parity and the error data from the Input.txt

and store it in variable like the above method.

 After finding out the length of the data converted into

bits form a table of 8 columns and depending on the

data length the number of rows.

International Journal of Advacnes in Computer Networks and its Security

258

 If the passed flag (type of parity) is 2 then it is even

parity else it is odd parity.

 Calculate the parity bit of each of the 8 columns and

create a new row of 8 bits which with have parity bits

for the whole block.

 The first parity bit of the first column is calculated

based on all the first bit values of the first column,

second parity bit value based on second column value

and so on…..

 After the parity bit is formed, i.e. the last row has

been formed which represents the parity bit of the
original data and error data, they are written into the

output file in each line.

B. Pseudo code of CRC:

 Convert the data into binary format.

 If it is sender side append 12 0’s with the binary data

else add original CRC with the binary data.

 If the MSB is 0 then XOR binary data with the string

000000000000 else XOR with the string

1100000001111.

 Find the HEXA decimal format of the XOR results.

 If it is 0 both sender and receiver matches then there

are no error else there is an error.

V. CONCLUSION

This paper gives the details about error detection

mechanisms such as LRC and CRC and how these

mechanisms can work on NetSim using front end designs

of LRC and CRC.

VI. ACKNOWLEDGMENT

I am very thank full to my HOD Dr. M.

Siddappa, SSIT, and my internal guide Sowmya M N,

SSIT and also my external guide Mahendran, TETCOS,

Bengaluru, for their guidance in my project work and also

their guidance for preparing this paper.

REFERENCE

[1]. Ritter, Terry. "The Great CRC Mystery". Dr. Dobb's

Journal 11 (2): 26–34, 76–83.

http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM.

Retrieved 21 May 2009.

[2]. Peterson, W. W. and Brown, D. T.. "Cyclic Codes for

Error Detection". Proceedings of the IRE 49: 228.

[3]. N. Cam-Winget, Nancy; R. Housley, Russ; D.

Wagner, David; J. Walker, Jesse (May 2003). "Security

Flaws in 802.11 Data Link Protocols". Communications

of the ACM 46 (5): 35–39.

[4]. Stigge, Martin; Plötz, Henryk; Müller, Wolf; Redlich,

Jens-Peter (May 2006). Reversing CRC – Theory and

Practice. Berlin: Humboldt University Berlin. pp. 24.

http://sar.informatik.hu-

berlin.de/research/publications/SAR-PR-2006-05/SAR-

PR-2006-05_.pdf. Retrieved 21 July 2009.

[5]. Anachriz (30 April 1999). "CRC and LRC how to

Reverse it".
http://www.woodmann.com/fravia/crctut1.htm. Retrieved

21 January 2010.

[6]. Williams, Ross N. (24 September 1996). "A Painless

Guide to LRC and CRC Error Detection Algorithms

V3.00".

http://www.repairfaq.org/filipg/LINK/F_crc_v3.html.

Retrieved 5 June 2010.

[7]. Koopman, Philip; Chakravarty, Tridib (2004).

"Cyclic Redundancy Code (CRC) and Longitudinal

Redundancy Code(LRC) Polynomial Selection For

Embedded Networks".

http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman

04_crc_poly_embedded.pdf.

[8]. Greg Cook (26 March 2010). "Catalogue of

parametrised LRC and CRC algorithms".

http://regregex.bbcmicro.net/crc-catalogue.htm. Retrieved

5 June 2010.

http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
file:///C:/Users/GATEXPERTS/AppData/Local/Temp/%22CRC%20and%20LRC%20how%20to%20Reverse%20it%22
file:///C:/Users/GATEXPERTS/AppData/Local/Temp/%22CRC%20and%20LRC%20how%20to%20Reverse%20it%22
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
file:///C:/Users/GATEXPERTS/AppData/Local/Temp/%22Catalogue%20of%20parametrised%20LRC%20and%20CRC%20algorithms%22
file:///C:/Users/GATEXPERTS/AppData/Local/Temp/%22Catalogue%20of%20parametrised%20LRC%20and%20CRC%20algorithms%22

