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Abstract— The concept of public key Cryptosystem evolved from 

an attempt to attack two of the most difficult problems 

associative with symmetric encryption. The initial problem is 

that of key distribution. As we have seen, key distribution under 

symmetric encryption requires either (1) that two 

communication already share a key, which somehow is 

distributed to them; or (2) the use of key distribution centre. 

Finally, there is a feeling that key distribution is trivial when 

using public key encryption, compared to the rather 

cumbersome handshaking involved with key distribution canters 

for symmetric encryption. This paper provides an overview of 

various public key algorithms and a comparison between them is 

made on the basis of Key size, security and Cost. First we discuss 

the RSA algorithm, Diffie Hellman Key Exchange Algorithm and 

EC Cryptography – (ECDH – Elliptic Curve Diffie Hellman) and 

a comparison between them is made on the basis of Key size, 

security and Cost. 

KEYWORDS— RSA ALGORITHM, DIFFIE-HELLMAN KEY EXCHANGE 

ALGORITHM, ELLIPTIC CURVE CRYPTOGRAPHY (ECC) 

I. INTRODUCTION 

Public-key cryptography [1] refers to a commonly used set of 

methods for transforming a message into a form that can be 

read only by the intended recipient. This cryptographic 

approach involves the use of asymmetric key algorithms that 

is, the non-message information (the public key) needed to 

change the message to a protected form is different from the 

information required to reverse the process (the private key). 

Thus, unlike symmetric key algorithms [7], a public key 

algorithm does not involve a secure initial exchange of one or 

more secret keys between the sender and receiver. The 

Standard RSA, which is considered to be one of the best 

Cryptographic Systems built. 

II. RSA ALGORITHM 

    RSA [2] is a public-key cryptosystem defined by 

Rivest, Shamir, and   Adleman in 1977. Any of the 

two related keys can be used for encryption, with 

the other is used for reverse process i.e. decryption. 

The RSA algorithm involves three basic steps: key 

generation, encryption and decryption 

A. Key Generation 

 Generate two large prime numbers, p and q 

 Let n = pq 

 Let m = (p-1)(q-1) 

 Choose a small number e, co prime to m 

 Find d, such that de % m = 1 

 Distribute e and n as the public key. 

Keep d and n as the secret key. 

B. Encryption 

 C = P
e
 % n 

C. Decryption 

 P = C
d
 % n 

x % y means the remainder of x divided by y 

 

In the general case where RSA is used to exchange symmetric 

keys [8], key encapsulation provides a simpler alternative to 

padding. Instead of generating a random symmetric key, 

padding it and then encrypting the padded version through 

RSA, a random integer m between 1 and n-1 is generated and 

encrypted directly using RSA. Both the sender and receiver 

produce identical symmetric keys by applying the same key 

derivation function to m. Key encapsulation mechanisms 

(KEMs) are a class of encryption techniques intended to 

secure symmetric cryptographic key material for transmission 

using asymmetric (public-key) algorithms. In practice, public 

key systems are awkward to use in transmitting long messages. 

Instead they are frequently used to exchange symmetric keys, 

which are relatively short. The symmetric key is then used to 

encrypt the large message. 

The conventional approach to sending a symmetric key with 

public key systems is to first generate a random symmetric 

key and then encrypt it using the selected public key algorithm. 

The recipient then decrypts the public key message to recover 

the symmetric key. As the symmetric key is usually small in 

size, padding is required for full security and proofs of 

security for padding schemes are often less than complete. 

KEMs shorten the process by generating a random element in 

the finite group underlying the public key system and deriving 

the symmetric key by hashing that element, eliminating the 

necessitate for padding. 

Suppose Alice has transmitted her public key (n,e) to Bob, 

while keeping her private key secret, as usual. Bob then 

wishes to transmit symmetric key M to Alice. M might be a 

128 or 256-bit AES key, for example. Note that the public key 

n is usually 1024-bits or even longer, thus much larger than 

classic symmetric keys. If e is small enough that M < n 
1 / e

, 
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then the encryption can be rapidly broken using ordinary 

integer arithmetic. To avoid such potential flaws, Bob first 

turns M into a larger integer 0 < m < n by using an agreed-

upon reversible procedure known as a padding scheme, such 

as OAEP. He then computes the cipher text c equivalent to: 

 
Alice be able to recover m from c by using her private key 

exponent d by using the following computation: 

 
Given m, she recovers the original message M by reversing 

the padding scheme. With KEM the method is simplified as 

follows:  

Instead of generating a random symmetric key M, Bob first 

generates a random m, 0 < m < n. He derives his symmetric 

key M by M = KDF (m), where KDF is a key derivation 

function, such as a cryptographic hash. He then computes the 

cipher text c corresponding to m: 

 
Alice then recovers m from c by using her private key 

exponent d by the same method as above: 

 
Given m, she is able to recover the symmetric key M by M = 

KDF (m). The KEM eliminates the difficulty of the padding 

scheme and the proofs needed to show the padding is secure 

p.  Note that while M can be considered from m in the KEM 

approach, the reverse is not feasible; assuming the key 

derivation function is one-way. An attacker who by some 

means recovers M cannot obtain the plaintext m. using the 

padding approach, he can. Thus KEM is supposed to 

encapsulate the key. Note that if the same m is sent to e or 

more recipients in an encrypted way and the receivers share 

the same exponent e, but different p, q, and n, then one can 

decrypt the original clear text message via the Chinese 

remainder theorem. Thus key encapsulation must not be used 

directly to send the same symmetric key to multiple recipients. 

In its place, the common symmetric key can be encrypted via 

separate symmetric keys (Key Encryption Keys) for each 

recipient and the encrypted keys then sent individually. 

Similar techniques are presented for Diffie-Hellman 

encryption and other public key methods. 

A). Is RSA secure? 

Nobody knows. An apparent attack on RSA is to 

factor pq into p and q.   Unfortunately nobody has 

the slightest idea how to prove that factorization is 

inherently slow. It is easy to formalize what we 

mean by ``RSA is/isn't strong''; Note that there may 

even be a `shortcut' to breaking RSA other than   

factoring. It is obviously adequate but so far not 

provably essential. That is, the security of the 

system depends on two significant assumptions:  

(1) factoring is required to break the system, and  

(2) Factoring is `inherently computationally 

intractable', or, alternatively, `factoring is hard' and 

`any approach that can be used to break the system 

is at least as hard as factoring'. 

 Previously even professional cryptographers have 

made mistakes   in estimating and depending on the 

intractability of different computational problems 

for secure cryptographic properties. For  example, a 

system called a `Knapsack cipher' was in vogue in 

the  literature for years until it was demonstrated 

that the instances typically generated could be 

efficiently broken, and the whole  area of research 

fell out of favour. 

III. DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM 

Many cryptographic applications, such as encryption, depend 

on secret keys. These must be exchanged in advance and this 

must happen in a secret way, as the name suggests. Let's say 

Alice and Bob want to exchange a few words via a voice-

over-IP telephone. As data is broadcasted across the unsafe 

Internet, a symmetric algorithm is used for encryption. That is 

one where both parties apply the same secret key. Let's also 

assume that this key is a (large) number. Evil Eve would also 

want to know the secret key so that she is able to decrypt 

Alice and Bob's communication data. How can Alice and Bob 

have the same opinion on a key without Eve knowing what it 

is? They could meet up in a area without Eve and agree on a 

number. But what if Alice was in India and Bob was in Brazil? 

In a scenario like this a technique called Diffie-Hellman key 

exchange [9] is often used. It permits the agreement on a 

shared secret key via an insecure network (that is one where 

we have eavesdroppers like Eve) such as the Internet. Before 

explaining how it works it is necessary to briefly introduce 

one mathematical term, the primitive root. Let p be a prime. 

From now on we do all calculations modulo p. This is called 

modular arithmetic and has similar properties to the ``normal'' 

arithmetic (addition and multiplication). Basically, after every 

operation we divide the result by p and keep on working with 

the remainder. Definition: An integer g € {1… p-1} is called a 

primitive root mod p if for every A € {1,2,….,p-1} there is an 

integer a such that A ≡ ga mod p. 

A) Algorithm Steps:  

 Alice and Bob agree on a prime number p and 

a natural number g such that g is a primitive 

root mod p. These numbers may be public. 

 Alice chooses a secret natural number a, 

computes A = g
a
 mod p, and sends A to Bob. 

 Bob chooses a secret natural number b, 

computes B = g
b
 mod p, and sends B to Alice. 

 Alice computes the key KA = B
a
 mod p. 

 Bob computes the key KB = A
b
 mod p. 
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 The two keys match because KA ≡ B
a
 ≡ (g

b
)
 a
 ≡ 

g
ba

 ≡  g
ab

  ≡ (g
a
)
b
  ≡ A

b
  ≡ KB mod p.  

The number g should be a primitive root mod p 

because this ensures that there are many different 

possibilities for the key. In the example above with 

p=5, choosing g=4 (not a primitive root) gives only 

the values 1 or 4 for the key, whereas choosing g=2 

(a primitive root) yields the values K=1,2,3,4 as 

possible keys. The more possible values there are, 

the harder it becomes for Eve to guess the actual 

key, which is what we want. In practice g is not 

always compulsory to be a primitive root, but it 

must be selected in such a way that there are 

adequately many different values for the key. Such 

a sensible choice requires additional investigation, 

which is why theorists often include the primitive 

root requirement.   

B) Security of the Diffie-Hellman Key Exchange 

 

Now consider what information evil Eve can gain 

during the process of a Diffie-Hellman key 

exchange [10]. Let's assume she has access to all 

the communication between the two parties. Hence 

she knows the values of g, p, A and B, but not those 

of a or b since a is only known to Alice and b is 

only known to Bob and they are never exchanged. 

Eve wants to know the key, i.e. the value g
ab

 mod p. 

Eve can achieve this by finding a or b and then 

working out g
ba

 mod p. The task of finding a or b is 

a well-known problem, called the discrete logarithm 

problem. 

C) Discrete Logarithm Problem (DLP) 

Given a prime p, a base g and a number A ≡ g
a
 mod 

p, find the value of a. The number a is then called 

the discrete logarithm to base g of A mod p. 

essentially, the difficulty is to find a suitable 

exponent a. Calculating logarithms is easy over the 

real numbers, but a hard problem when using 

modular arithmetic. Note that the DLP [9] always 

has a solution if g is a primitive root b mod p, 

meaning that the powers of g take on all values 

from 1 to p-1 mod p. In other words for every 

number A there exists that g
a
 ≡ A mod p. Still it 

may be very difficult to find this solution as we will 

explain soon. If Eve can solve the DLP, she can 

obtain the secret key and thus break the Diffie-

Hellman key exchange protocol. Therefore it is 

often said that the security of a Diffie-Hellman key 

exchange depends on the hardness of the DLP. So 

the most important question to answer at this point 

is: How difficult is solving the discrete logarithm 

problem? You may have noticed that solving the 

DLP may not be the only way of breaking the 

Diffie-Hellman key exchange protocol. It is not 

explicitly required that Eve find out a or b, she 

really just has to find the key K ≡ g
ab

 mod p 

somehow. If she can do this without the knowledge 

of a or b, that's fine. This problem is commonly 

known as the Diffie-Hellman problem (DHP) and 

may be easier to solve than the DLP. However, the 

best currently known way of solving the DHP is by 

solving the DLP. Scientists have been studying 

these two prominent problems for decades without 

any significant progress, which is why it is 

commonly assumed that they are equivalent, and 

research has been concentrating on the more 

general DLP. In those years of study, scientists 

have come to the conclusion that solving the DLP is 

very difficult. Try solving it by generating a key in 

the above example and finding the value of a only 

using your knowledge of p, g and A (be sure you 

uncheck both boxes). You will notice that as the 

numbers get larger, the problem becomes almost 

impossible to solve by hand. The truth is that it is 

also very difficult to solve using a computer. We 

will get a grasp of exactly how difficult it is by 

examining some algorithms which can solve the 

discrete logarithm problem. A common method of 

determining the difficulty of a problem is by 

studying how efficient the algorithms are that can 

solve it. The efficiency (or complexity) of an 

algorithm is in turn measured by its running time 

(i.e. the number of operations it performs) relative 

to the length in bits of its input. There are several 

classes of algorithms, three of which we discuss 

here. The running time of a polynomial-time 

algorithm can be expressed as a polynomial in the 

length of its input (e.g. n
2
 if n is the length of the 

input). Polynomial-time algorithms are generally 

considered efficient or feasible. On the contrary, 

exponential algorithms have a running time that can 

only be expressed by a term exponential in the 

length of the input (e.g. n
2
 for an input of length n). 

Exponential algorithms are considered inefficient or 

infeasible. Sub-exponential algorithms are neither 
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polynomial-time nor exponential, but somewhere in 

between. Problems that can only be solved by 

exponential algorithms are considered very hard. 

Unfortunately, there is usually no way of proving 

that there is no sub-exponential or polynomial-time 

algorithm that solves a certain problem. It is rather 

an assumption that scientists make when they have 

studied a problem for years without finding a better 

algorithm. However, we should always be prepared 

for the unlikely case that an ingenious person 

presents a better than the currently known best 

algorithm. Nevertheless, most people feel save 

using a cryptographic system if its security relies on 

a well-studied hard problem in this sense. And no 

matter how paranoid we are, it's the best we can do 

at the moment. 

IV. ELLIPTIC CURVE CRYPTOGRAPHY (ECC) 

A.  Introduction 

Elliptic Curve Cryptography (ECC) [4] is a 

public key cryptography. In public key 

cryptography each user taking part in the 

communication generally have a pair of keys, a 

public key and a private key, and a set of operations 

associated with the keys to do the cryptographic 

operations. Only the particular user knows the 

private key whereas the public key is distributed to 

all users taking part in the communication. Some 

public key algorithm may require a set of 

predefined constants to be identified by all the 

devices taking part in the communication. „Domain 

parameters‟ in ECC is an example of such constants. 

Public key cryptography, unlike private key 

cryptography, does not need any shared secret 

between the communicating parties but it is much 

slower than the private key cryptography. 

The mathematical operations of ECC [12] is 

defined over the elliptic curve y2 = x3 + ax + b, 

where 4a3 + 27b2 ≠ 0. Each value of the „a‟ and „b‟ 

provides a different elliptic curve. All points (x, y) 

which suits the above equation plus a point at 

infinity lies on the elliptic curve. The public key is a 

point in the curve and the private key is a random 

number. The public key is acquired by multiplying 

the private key with the generator point G in the 

curve. The generator point G, the curve parameters 

„a‟ and „b‟, collectively with few more constants 

represents the domain parameter of ECC. One main 

advantage of ECC is its small key size. A 160-bit 

key in ECC is considered to be as safe as 1024-bit 

key in RSA. 

B.  Discrete Logarithm Problem 

The security of ECC depends on the difficulty of 

Elliptic Curve Discrete Logarithm Problem. 

Suppose P and Q be two points on an elliptic curve 

such that kP = Q, where k is a scalar. Given P and 

Q, it is computationally infeasible to find k, if k is 

sufficiently large. k is the discrete logarithm of Q to 

the base P. Hence the main operation concerned in 

ECC is point multiplication. i.e. multiplication of a 

scalar k with any point P on the curve to find 

another point Q on the curve.  

C.  Finite Fields 

The elliptic curve operations defined above are on 

real numbers. Operations over the real numbers are 

slow and incorrect due to round-off error. 

Cryptographic operations need to be faster and 

correct. To make operations on elliptic curve 

precise and more efficient, the curve cryptography 

is defined over two finite fields. 

• Prime field Fp and 

• Binary field F2 m 

The field is chosen with finitely large amount of 

points suited for cryptographic operations. The 

operations on finite fields are defined on affine 

coordinate system. Affine coordinate system is the 

normal coordinate system that we are familiar with 

in which each point in the coordinate system is 

characterized by the vector (x, y). 

D) EC on Prime field Fp 

The equation of the elliptic curve on a prime field 

[12] Fp is y2 mod p= x3 + ax + b mod p, where 4a3 

+ 27b2 mod p ≠ 0. Now the elements of the finite 

field are integers between 0 and p – 1. All the 

operations such as addition, substraction, division, 

multiplication involves integers between 0 and p – 

1. This is known as modular arithmetic. The prime 

number p is preferred in such a way that there is 

finitely large number of points on the elliptic curve 

to make the cryptosystem secure. SEC gives curves 

with p ranging between 112-521 bits. The graph for 

this elliptic curve equation is not a smooth curve. 

Therefore the geometrical explanation of point 

addition and doubling as in real numbers will not 
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work here. On the other hand, the algebraic rules 

for point addition and point doubling can be 

adapted for elliptic curves over Fp. 

1)  Point Addition 

Consider two distinct points J and K such that J = 

(xJ, yJ) and K = (xK, yK) Let L = J + K where L = 

(xL, yL), then xL = s2 - xJ – xK mod p yL = -yJ + s 

(xJ – xL) mod p s = (yJ – yK)/(xJ – xK) mod p, s is 

the slope of the line through J and K. If K = -J i.e. K 

= (xJ, - J mod p) then J + K = O. where O is the 

point at infinity. If K = J then J + K = 2J then point 

doubling equations are used. Also J + K = K + J 

2)  Point Subtraction 

Consider two distinct points J and K such that J = 

(xJ, yJ) and K = (xK, yK) Then J - K = J + (-K) 

where -K = (xk, -yk mod p) Point subtraction is 

used in certain implementation of point 

multiplication such as NAF [1].  

3)   Point Doubling 

Consider a point J such that J = (xJ, yJ), where yJ ≠ 

0 Let L = 2J where L = (xL, yL), Then xL = s2 – 

2xJ mod p 

yL = -yJ + s(xJ - xL) mod p 

s = (3xJ 2 + a) / (2yJ) mod p, s is the tangent at 

point J and a is one of the parameters chosen with 

the elliptic curve If yJ = 0 then 2J = O, where O is 

the point at infinity. 

E) EC on Binary field F2 m 

The equation of the elliptic curve on a binary 

field [11] F2 m is y2 + xy = x3 + ax2 + b, where b 

≠ 0. At this point, the elements of the finite field are 

integers of length at most m bits. These numbers 

can be considered as a binary polynomial of degree 

m – 1. In binary polynomial the coefficients can 

only be 0 or 1. All the operation such as addition, 

substation, division, multiplication involves 

polynomials of degree m – 1 or lesser. The 

polynomial arithmetic is defined in session 10.2. 

The m is chosen such that there is finitely large 

number of points on the elliptic curve to make the 

cryptosystem secure. SEC specifies curves with m 

ranging between 113-571 bits [4]. The graph for 

this equation is not a smooth curve. Hence the 

geometrical explanation of point addition and 

doubling as in real numbers will not work here. 

However, the algebraic rules for point addition and 

point doubling can be adapted for elliptic curves 

over F2 m. 

1)  Point Addition 

Consider two distinct points J and K such that J = 

(xJ, yJ) and K = (xK, yK) 

Let L = J + K where L = (xL, yL), then 

xL = s2 + s + xJ + xK + a 

yL = s (xJ + xL) + xL + yJ 

s = (yJ + yK)/(xJ + xK), s is the slope of the line 

through J         and K. 

If K = -J i.e. K = (xJ, xJ + yJ) then J + K = O. 

where O is the point at infinity. 

If K = J then J + K = 2J then point doubling 

equations are used.  Also J + K = K + J 

2)  Point Subtraction 

Consider two distinct points J and K such that J = 

(xJ, yJ) and K = (xK, yK) Then J - K = J + (-K) 

where -K = (xk, xk + yk) Point subtraction is used 

in certain implementation of point multiplication 

such as NAF. 

3)  Point Doubling 

Consider a point J such that J = (xJ, yJ), where xJ 

≠ 0 

Let L = 2J where L = (xL, yL), Then 

xL = s2 + s + a 

yL = xJ 

2 + (s + 1)*xL 

s = xJ + yJ/ xJ, s is the tangent at point J and a is 

one of the parameters chosen with the elliptic curve 

If xJ = 0 then 2J = O, where O is the point at 

infinity. 

F) Elliptic Curve Domain parameters 

Apart from the curve parameters a and b, there 

are other parameters that must be agreed by both 

parties involved in secured and trusted 

communication using ECC. These are domain 

parameters. The domain parameters for prime fields 

and binary fields are described below [14]. The 

generation of domain parameters is out of scope of 

this paper. There are several standard domain 

parameters defined by SEC. Generally the protocols 

implementing the ECC specify the domain 

parameters to be used.  

1)  Domain parameters for EC over field Fp 
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The domain parameters for Elliptic curve over Fp 

are p, a, b, G, n and h. p is the prime number 

defined for finite field Fp. a and b are the 

parameters defining the curve y2 mod p= x3 + ax + 

b mod p. G is the generator point (xG, yG), a point 

on the elliptic curve chosen for cryptographic 

operations. n is the order of the elliptic curve. The 

scalar for point multiplication is chosen as a 

number between 0 and n – 1. h is the cofactor 

where h = #E(Fp)/n. #E(Fp) is the number of points 

on an elliptic curve. 

2)  Domain parameters for EC over field F2 m 

The domain parameters used for elliptic curve 

over F2 m are m, f(x), a, b, G, n and h. m is an 

integer intended for finite field F2 m. The elements 

of the finite field F2 m are integers of length at 

most m bits. f(x) is the irreducible polynomial of 

degree m used for elliptic curve operations. a and b 

are the parameters defining the curve y2 + xy = x3 

+ ax2 + b. G is the generator point (xG, yG), a point 

on the elliptic curve selected for cryptographic 

operations. n is the order of the elliptic curve. The 

scalar for point multiplication is chosen as a 

number between 0 and n – 1. h is the cofactor 

where h = #E(F2 m)/n. #E(F2 m) is the number of 

points on an elliptic curve.  

V. EC CRYPTOGRAPHY – (ECDH – ELLIPTIC CURVE DIFFIE 

HELLMAN) 

ECDH [14] is a key agreement protocol that 

permits two parties to establish a shared secret key 

that can be used for private key algorithms. 

Mutually parties exchange some public information 

to each other. Using this public data and their own 

private data these parties computes the shared secret 

key. Any third party, who doesn‟t have right to use 

to the private details of each device, will not be able 

to determine the shared secret from the available 

public information. An outline of ECDH process is 

defined below. For producing a shared secret 

between A and B using ECDH, both have to agree 

up on Elliptic Curve domain parameters. Both end 

have a key pair consisting of a private key d (a 

randomly selected integer less than n, where n is the 

order of the curve, an elliptic curve domain 

parameter) and a public key Q = d * G (G is the 

generator point, an elliptic curve domain parameter). 

Suppose (dA, QA) be the private key - public key 

pair of A and (dB, QB) be the private key - public 

key pair of B. 

1. The end A calculates K = (xK, yK) = dA * QB 

2. The end B calculates L = (xL, yL) = dB * QA 

3. Since dAQB = dAdBG = dBdAG = dBQA. As 

a result K    = L and hence xK = xL 

4. Hence the shared secret is xK 

Since it is practically impossible to find the 

private key dA or dB from the public key K or L, 

it‟s not possible to find the shared secret for a third 

party. 

 

VI. WHAT'S THE DIFFERENCE BETWEEN THE RSA AND DIFFIE-

HELLMAN SCHEMES? 

  Diffie and Hellman proposed a system that 

necessitates the dynamic exchange of keys for 

every sender-receiver pair. This two-way key 

negotiation is helpful in further complicating 

attacks, but requires additional communications 

overhead. The RSA system reduces 

communications overhead with the capability to 

have static, unchanging keys for each receiver that 

are `advertised' by a recognized `trusted authority' 

(the hierarchical model) or distributed in an 

informal `web of trust'. 

VII. COMPARING ECC TO RSA AND DIFFIE-HELLMAN 

ECC's effectiveness and security is considered strong enough 

that the US National Security Agency (NSA) incorporated it, 

while excluding RSA, from its Suite B cryptography 

recommendations. Suite B is a set of algorithms that the NSA 

recommends for use in defensive both classified and 

unclassified US government information and systems.  

One of the ways judgments are made about the correct key 

size for a public key system is to look at the power of the 

conventional (symmetric) encryption algorithms that the 

public key algorithm will be used to key or authenticate. The 

subsequent table gives the key sizes recommended by the 

National Institute of Standards and Technology (NIST) to 

shield keys used in conventional encryption algorithms like 

the DES and AES together with the key sizes for RSA, Diffie-

Hellman and elliptic curves that are required to offer 

equivalent security.  

 
Symmetric Key 

Size (bits) 

RSA and Diffie-

Hellman Key Size 

(bits) 

Elliptic Curve Key 

Size (bits) 

56 512 112 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 
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256 15360 521 

       TABLE 1: COMPARABLE KEY SIZES IN TERMS OF COMPUTATIONAL EFFORT 

FOR CRYPTANALYSIS 

 

As symmetric key sizes increase, the required key 

sizes for RSA and Diffie-Hellman increase at a 

more rapidly rate than the required key sizes for 

elliptic curve cryptosystems. An elliptic curve 

system proposes more security per bit increase in 

key size than either RSA or Diffie-Hellman public 

key systems [6]. Elliptic curve cryptosystems are 

also more computationally efficient than the first 

generation public key systems, RSA and Diffie-

Hellman. Even though elliptic curve arithmetic is 

slightly more difficult per bit than either RSA or 

DH arithmetic, the added strength per bit more than 

makes up for any additional compute time. The 

subsequent table shows the ratio of DH 

computation versus EC computation for every key 

size listed in Table 1.  

 

 

 

 

 

 
Security Level (bits) Ratio of 

DH Cost : EC Cost 

80 3:1 

112 6:1 

128 10:1 

192 32:1 

256 64:1 

TABLE 2: RELATIVE COMPUTATION COSTS OF DIFFIE-HELLMAN AND 

ELLIPTIC CURVES 

 

Elliptic curve cryptography support is still in its 

early life but its use will only grow in the coming 

years. 

Through the result of tables given below, it can be 

seen that ECC is superior to RSA in terms of the 

key size and cost. When all parameters are chosen 

securely, ECC cryptosystems provide the same 

functionality and security features as the widely 

used RSA cryptosystem. Still, they require much 

shorter key lengths for getting a similar security 

level. For example, a 160-bit ECC-key (meaning 

that the underlying field is Fp for a 160-bit prime p) 

attains about the same level of security as a 1024-

bit RSA key. In the future, when computers become 

more powerful and necessary key lengths become 

larger, this advantage grows disproportion ally 

bigger. As the ECC key sizes are so much shorter 

than comparable RSA keys, the length of both the 

public key and private key is much shorter in 

elliptic curve cryptosystems. This results into faster 

processing times, and lesser demands on memory 

and bandwidth; some studies have found that ECC 

is faster than RSA for signing and decryption, but 

slower for signature verification and encryption [5]. 

 

ECC Key Size RSA Key Size 
Key-Size 

Ratio 

163 1,024 1:6 

256 3,072 1:12 

384 7,680 1:20 

512 15,360 1:30 

         Table 3: Key sizes in bits 

 

Recommended key lengths for RSA, ECC-systems 

and symmetric algorithms until 2040 are shown in 

the graphs below 
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FIGURE 1: RECOMMENDED KEY LENGTHS FOR RSA, ECC-SYSTEMS AND 

SYMMETRIC ALGORITHMS UNTIL 2040 [17]. 

VIII. RECOMMENDED KEY LENGTHS 

The reason for this advantage of ECC lies in the fact that the 

best algorithms for solving the ECDLP are exponential, while 

the best factorization algorithm runs in sub-exponential-time. 

So the parameters for a cryptosystem based on the difficulty 

of factoring large integers, such as RSA, must be considerably 

larger. These details result in substantial advantages of ECC 

over conventional public-key algorithms. ECC cryptosystems 

provide high security using comparatively short key lengths, 

which allows for faster computations and shorter signatures 

and thus results in a more efficient utilization of resources like 

processing power, bandwidth, storage capacity, and power 

consumption. This is especially applicable for smart card 

applications, where such resources are inadequate, as well as 

in high security environment. 

IX. CONCLUSIONS 

“Security is not the only striking feature of elliptic curve 

cryptography. Elliptic curve cryptosystems also are more 

computationally efficient than the initial generation public key 

systems, RSA and Diffie-Hellman”. In this paper, we discussed the 

basis of RSA Cryptography, Diffie Hellman Key Exchange 

Algorithms and ECC cryptography and a comparison between them 

is made on the basis of Key size, security and Cost. These 

Algorithms that were previously explained are compared in terms of 

protection against common attacks, fastness in Encryption/ 

Decryption step and security as they are explained in only 

mathematical and theoretical basis; no experiment was conducted; 

although some experimental results were referred to. 
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