
International Journal of Advances in Computer Networks and its Security

165

Creation and Prevention of Persistent XSS

Attack

Nilesh Kunhare

Research Scholar, CSE

Department

MANIT

Bhopal, India

nilesh954@gmail.com

B.N.Roy

Assistant Professor, CSE

Department

MANIT

Bhopal, India

Aishwary Pandey

Research Scholar, CSE

Department

UIT, BU

Bhopal, India

Abstract— Web applications are often vulnerable

to attacks. Research data shows that over 80% of

the applications are vulnerable to Cross Site

Scripting (XSS) attacks. It commonly targets

scripts embedded in a page which are executed on

client side (on the user’s web browser) rather than

on server side. It involves three parties- attacker,

client and the website. The goal of XSS is to steal

client cookies and any other sensitive information,

which can identify the client with the website.

There are two ways of XSS attack. Non-persistent

(First Order or Reflected XSS) attack and

Persistent (Second Order or Stored XSS) attack.

Persistent attack is considered to be the most

dangerous types of XSS attack because the attacker

can directly supply the malicious input without

tricking users into clicking on a URL. In this paper

we will explain how persistent XSS attack takes

place and understand the behavior of attackers by

simply creating an environment where attacker

intrudes some malicious code and the code is

executed when the user visits on that infected web

page and hence the attacker successfully leads to

exploit the trust relationship between victim’s

browser and server’s location. We will also discuss

about the approaches that can be used for

preventing XSS attack types.

Keywords— First Order, Second order, Reflected,

Stored, Persistent, XSS, and Cookies.

I. INTRODUCTION

Web applications use cookies to associate a

unique account with a specific user. Moreover,

most retail, auction, and banking sites use

cookies for authorization and authentication

purposes for the accountability of many user

accounts on their collective websites. A typical

web application involves the exchange of two

authentication tokens namely- username and

password, the values stored in a cookie then used

as an authentication token. It is understood that

user‟s web session is vulnerable to hijacking if

an attacker captures that user‟s cookies. Perhaps

the cross-site scripting is considered to be the

most popular scheme for stealing Internet

cookies which can be used by the attacker to gain

control of the user account.

II. CROSS-SITE SCRIPTING

XSS allows user to unintentionally send

malicious data to him through that application. It

is an attack that forces a website to echo

attacker-supplied executable code, which then

loads into the user‟s browser. Attackers perform

XSS exploitation by crafting malicious URLs

and tricking users into clicking on them. The

links created by attackers cause client site

scripting languages (such as PHP, CSS,

JavaScript, VBScript, HTML etc.) to execute on

the victim‟s browser. The attacker then able to

steal the cookies and other sensitive information

of user belong to that web site. XSS is a code

injection attack which is performed to attack

other users of the web application by crafting

some malicious code, injecting them to run on

legitimate user‟s browser. There are two ways by

which users infected by XSS attack. Users either

tricked into clicking on a crafted link (Non-

Persistent or First order XSS attack) or,

unknowingly attacked by simply visiting a web

page embedded with malicious code (Persistent

or Second order XSS attack).We will discuss

both types of XSS attack in next sections.

A. Non-Persistent XSS Attack

In non-persistent XSS attack, the attacker

provided script is embedded in the web page is

eventually executed by the server as an

immediate response of request. This is the reason

why it is also known as Reflected attack because

the malicious code is directly reflected back to

the user by use of third party mechanism. It is

combined with other techniques such as social

International Journal of Advances in Computer Networks and its Security

166

engineering and phishing [6] in order to steal

cookies, and other sensitive information of user

(like credit card number) These attacks are most

commonly found in search engines like AOL,

Ebay, Google, Amazon etc.

Figure 1 the block diagram of how non-persistent XSS attack
takes place.

Let us call the site under attack-

http://myserver.com/attack.jsp. Suppose that the script is

named attack.jsp and its parameter is “name”. It

can be operated in this way.
<%out.println("Welcome " + request.getParameter("name")); %>

Then the response would be:

Welcome Nilesh

The attacker then writes some malicious code

such as
http://myserver.com/attack.jsp?name=<script>alert(“Hacked”)

</script>

The victim‟s browser would interpret this

response as an HTML page containing a piece of

JavaScript code. This code, when executed is

allowed to access all cookies belonging to that

site. At this point the hacker will continue to

modify this URL to include more sophisticated

XSS attack to exploit users. It can steal

credential, deface a website, and create a fake

page or spam mail and many more.

B. Persistent XSS Attack

Persistent XSS attack do not require specially

crafted link for execution. A hacker submits XSS

exploit code to an area of a website that is likely

to be visited by other users. This area could be

message board posts, chat rooms, user reviews,

comments, HTML email and numerous other

locations. Whenever the user visits the infected

web page, execution is automatic. This is the

reason why persistent attack is considered to be

more dangerous than non persistent attack

because the user has no mean of defending

himself from that infected page.

Figure 2 the block diagram of how Persistent XSS attack

takes place.

Let us consider a scenario where a user visits a

vulnerable website named
http://mywebpage/login.jsp

When authorized user accesses the database of a

company by entering username and password of

that site, it displays the related web page of that

site. But whenever that authenticated user want

to update some records he have to visit on next

page by clicking on some command button, as

the user clicks on that button, the user visited to

the infected page. This is because the attacker

crafted some malicious script like-
<SCRIPT>document.location= 'http://attackerhost.example/cgi-

bin/cookiesteal.cgi?'+document.cookie</SCRIPT>

This malicious code is executed whenever user

visits that particular infected web page. This is

shown in the figure 3 that how persistent XSS

attack takes place as user visits the web page.

The attacker‟s target is to steal the cookies and

other sensitive information of the legitimate

users of web page. The fig 2 shows the block

diagram of persistent XSS attack and describes

how it executes the stored malicious code.

Figure 3 shows the stealing of cookies and Log details from a

web-page.

International Journal of Advances in Computer Networks and its Security

167

Persistent attack occurs mostly at community

driven web applications which involves the

visiting of web pages. It neither requires attacker

to publish any crafted URLs nor requires social

engineering. Such attack can happen only when

the user visits that infected page, as we

experienced in our example. This is the reason

that persistent attack can easily be hidden from

the victims. Hence they are more vicious and

lethal than non-persistent attack. SAMY worm

[5] is one of the famous persistent XSS attacks

that happened on MySpace.com, spread by

exploiting a persistent XSS vulnerability on

personal profile web page. Samy, the author

update his profile by exploiting JavaScript code.

He was successful in uploading his code by

using some filter-bypassing technique. Whenever

an authenticated MySpace user visits Samy‟s

profile, the worm payload using XHR, forced the

user‟s Web browser to add Samy as friend and

alter the user‟s profile with a copy of malicious

code. Another form of persistent XSS attack

recently found in Facebook [7] where the

attackers locate the vulnerability in application

publishing form. Researchers found that attacker

permanently inject the malicious code into

scamp Facebook application pages. The attackers

able to hijack user‟s cookies and performs

unauthorized actions because malicious code was

executed by the web browser in the context of

the domain.

III. PREVENTION TECHNIQUES

We discussed about two types of XSS attack.

Now we will discuss about the solutions which

can be used for preventing it. To prevent against

non-persistent XSS attack, the application user‟s

need to check anchors before clicking on them,

and application need to modify or reject input

values that contain malicious code. If the input

characters are sanitized then it can restricts the

attacker from using some special characters

which are not needed by authorized users. There

are various approaches [9 and 11] used for

preventing against the types of cross-site

scripting attacks, some of them are discussed

below.

1). Filtering

One of the common methods to prevent XSS

attack is filtering of JavaScript. Any JavaScript

code in the input must be transformed in way it

is not execute by a web browser if sent to it.

Input filtering: The script code must be

transformed into a text string that is displayed by

the web browser instead of being execute, rather

deleting all JavaScript code during input

filtering. It can be achieved by HTML encoding

like
<script>  <script>

Output filtering: It is a process when an

application itself is using JavaScript in HTML

documents to remove any script code in the final

HTML document before it is sent to the user‟s

browser. The following table shows HTML tags

which is considered to be dangerous when

executed.
HTML-

Tag

Use Risk

<APPLET> Embedding

of Java-

Applets

Execution of malicious code

<XML> Embedding
of Meta

statements

for HTML

Execution of malicious code

<SCRIPT> Embedding

of executable

script code
(JavaScript,

Jscript,

VBScript)

Execution of malicious code

<OBJECT> Embedding

of external

objects.

ActiveX-

Controls,

Applets,
Plug-Ins

Execution of malicious code

<STYLE> Embedding

of formatting

Instructions(
Style sheets)

for HTML

May contain JavaScript

type=text/javascript””(JavaS

cript Stylesheets)

<EMBED> Embedding
of external

objects.

Plug-Ins,
executable

code.

Execution of malicious code

2). Cookie Security

We know that XSS attack targets to steal cookie

value of web applications because they are used

for track activities, store and retrieve information

etc. To mitigate this particular threat, we can tie

session cookies to the IP address of the user who

originally logged in, and only permit that

particular IP to use that cookie.

3). Using BBCode

Most of the web-applications provide the facility

to the users to enhance and format the text.

However, these formatted texts are vulnerable to

XSS attack. The web application can be used

with BBCode [8] to provide user with enhanced

International Journal of Advances in Computer Networks and its Security

168

and formatted text and hence can protect against

such attack. Consider the example of BBCode.

[url =http://mywebserver.com] Persistent XSS attack [/url]

to

< a href =http://mywebserver.com”>Persistent XSS
attack.

The above illustrate a normal anchor tag

BBCode. However, if we place a JavaScript into

the BBCode then it can be still a BBCode, as

mentioned below.
[url=javascript: alert(„Nilesh‟)] Persistent XSS attack [/url]

To

http://mywebserver.com”>P

ersistent XSS attack.

As illustrated above, the BBCode is used with

placing JavaScript to prevent against such

attacks.

4). Disabled Cookie

Another option to prevent against XSS attack is

disabling cookie of web browser. Cookies are

accountable for authorization and authentication

of legitimate users. But an alternative must be

developed which provide the functionalities that

required for users association with web

application than depending on it.

5). Disabled JavaScript

Cross-site scripting uses the JavaScript code to

harm users. We can prevent XSS attack by

disabling JavaScript in web applications. This

approach act as a white list approach where only

trusted website has JavaScript enabled to prevent

any damage from occurring. Disabling

JavaScript means that newer site which only

deploys JavaScript may not be accessible.

IV. CONCLUSION

We discussed in this paper about the XSS attack

and its types. We reached on a conclusion that

Cross-site scripting (XSS) attacks are likely to

originate on popular websites with community-

driven features such as blogs, Web mail, chat-

rooms, message boards, social networking sites,

Wikis and user reviews. We observed that the

XSS attack will be challenge to spot because the

network behavior of infected browsers remains

relatively unchanged and the JavaScript exploit

code is hard to distinguish from normal Web

page. We observed the behaviors of types of

XSS attack. We found that Persistent XSS attack

is more destructive than Non-persistent XSS

attack as the application need to reject or sanitize

input values that may contain script code. We

also discussed about the techniques used for

preventing the types of cross-site scripting

attacks like Filtering, Disabling Cookie and

many more which can be helpful to prevent

against the XSS attacks.

REFERNCES

[1] The Evaluation of Cross-site Scripting Attacks by David
Endler, 2002

[2] Simple Cross-site Scripting Attack Prevention

Florian Kerschbaum SAP Research Karlsruhe, Germany
[3] Cross-site scripting Explained

 Amit Klein, Sanctum Security Group

[4] Automatic Creation of SQL Injection and Cross-Site
Scripting Attacks

Adam Kie˙zun (MIT), Michael D. Ernst (University of

Washington)
Philip J. Guo and Karthick Jayaraman (Stanford University)

[5] MySpace Worm Explanation,

[6] Jagatic, T., Johnson, N., Jakobsson, M., and Menczer, F.
Social Phishing. To appear in Communications of the ACM

[7] Facebook Spam Worm Propagates via Persistent XSS Vulnerability

(http://news.softpedia.com/news/Facebook-Spam-Worm-
Propagates-via-Persistent-XSS-Vulnerability-188934.shtml)
[8] BBCode Wikipedia
[9] Filtering JavaScript to prevent to cross site scripting.

[10] Web Security Detection Tools by Abhishek Agashe (San

Jose State University)
[11] Solution to Cross-site scripting

(http://hungred.com/web-development/solutions-crosssite-

scripting-xss-attack/)

http://news.softpedia.com/news/Facebook-Spam-Worm-Propagates-via-Persistent-XSS-Vulnerability-188934.shtml
http://news.softpedia.com/news/Facebook-Spam-Worm-Propagates-via-Persistent-XSS-Vulnerability-188934.shtml
http://hungred.com/web-development/solutions-crosssite-scripting-xss-attack/
http://hungred.com/web-development/solutions-crosssite-scripting-xss-attack/

