
International Journal of Advances in Electronics Engineering

293

Analyzing and optimizing technique used to

optimize RADAR application CFAR function

Abstract—The paper discuss about CFAR

function is one of the signal processing

characteristics which performs detection of false

alarm rate in cells. CFAR is one of the

applications in Radar signal processing system.

Paper discuss about the CFAR application and its

characteristics and about the algorithm.

Analyzing real-time Radar signal processing

application CFAR (Constant False Alarm Rate)

function in order to get the statistics of CPU

utilizations in terms of instructions per clock

cycles (IPC), for further improvement in the

performance of the application CFAR function.

For that making use of profiling tool AMD

CodeAnalyst tool which profiles the applications

running on system and gives statistics according to

our requirement that’s IPC.

To optimize the application CFAR function

required to choose one of the most applicable

optimizing technique to CFAR function is called

“OpenMP (Open Multi-Processing).OpenMP is an

Application Program Interface (API) that may be

used to explicitly direct multi-threaded, shared

memory parallelism which uses fork-join model for

parallel execution. And in further section discuss

about the time consumed by CFAR function

before applying OpenMP and after applying

OpenMP.

Keywords: radar, CFAR (constant false alarm

rate), CLASP (Configurable Linux bAsed Signal

Processor), IPC (instructions per clock cycles),

CPI (cycles per instructions), retired instructions,

OpenMP, Code Analyst.

I. INTRODUCTION

The conceptual basic radar system makes a target

present or absence decision in each of the range-

angle-Doppler frequency resolution cells. In a

thermal noise-only environment, either an operator or

an automatic decision device makes a target present

decision when the input waveform envelope exceeds

a prespecified threshold. The threshold is computed

and depends upon the thermal noise power and the

desired false alarm probability. However, when the

interference environment consists of the combination

of thermal noise and noise jamming and clutter, the

output interference power is greater than that due to

thermal noise alone. This is true even if adaptive

processing is used to “cancel” the jamming and/or

clutter. By keeping some constant threshold values to

compare against the above said condition CFAR

function has been designed.

Fig 1: General block diagram of radar receiver and

CLASP

Above figure depicts the way CLASP

(Configurable Linux bAsed Signal Processor) gets

digital video input from radar receiver. Where

Thejas G.S,

M.tech 4
th
 sem, CS&E,

SSIT, Tumkur,

Karnataka, India.

thejasssit@gmail.com

Prof.K.Karunakara,

Professor & HOD of IS&E,

SSIT, Tumkur,

Karnataka, India.

karunakara_k@rediffmail.com

Dr.M.Siddappa,

Professor & HOD of CS&E,

SSIT, Tumkur,

Karnataka, India.

siddappa.p@gmail.com

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

294

CLASP is one of the part in radar system which

consists of applications like Doppler filtering, pulse

compression, CFAR function etc. CFAR application

runs on CLASP. CFAR performs comparison of the

cells based on number of filters for false alarm rate

by keeping some constant threshold values.

II. CFAR CONCEPT

The basic concept of CFAR technique is that the

voltage of a test cell is compared to the voltage of a

set of reference cells. If the test cell voltage is

“similar” to those of the reference cells, a target

absent decision is made.

Figure below uses a range interval bracketing the

test cell as the reference cells. Use of this set implies

that the characteristic of the interference does not

change over the range interval of the reference and

test cells. This is true when the interference

environment consists of the sum of thermal and

constant power jamming noise. It is not true for

environments that include ground clutter because the

clutter cross section tends to change significantly in

relatively small-range increments.

Fig 2: CFAR processor using range window for

reference cells

A technique that is appropriate for ground clutter

obtains the reference cells from previous scans of the

resolution cell. This technique is called clutter map.

The data from prior scans is used to estimate the

clutter-plus-thermal noise power of every resolution

cell. When a target, such as an aircraft, enters the

cell, the increase in reflected power allows target

detection in the presence of the clutter. often the

clutter map is used with Doppler filter bank and a

different map is determined for each filter of the

bank.

III. CELL-AVERAGING CFAR

The threshold value T, the thermal noise power

Pn, and the design false alarm probability Pf when

using square law envelop detector. The equation is

also correct when the noise power is the sum of the

thermal and jamming noise or the residue power after

cancellation. Denote the power as Pr for either case.

Taking the natural logarithm of both sides of this

equation derives that the threshold equals the total

interference noise power multiplied by constant, k1,

which depends only up on the design false alarm

probability. Denote the square law envelope detector

output for the cell as q0. Then a target present

decision is made when

q0 > T = k1Pr (1.1)

And the probability of detection for a specified false

alarm probability is given by

PD = Pf
[1/(1+γa)]

 (1.1a)

Where γa is the average SNR for the swerling

fluctuating target. Equation 1.1a can be solved for γa

as

γa = ln (Pf / PD) / ln (PD) (1.1b)

When the total interference power is unknown, it

seems reasonable to estimate the interference power

as Pr and make target present decision when

q0 > Ta = k2 Pr (1.2)

Where Ta is an adaptive threshold and k2 is a new

multiplier constant that is usually not equal to k1.

A common method to estimate the interference

power is by averaging the output of the reference

cells. For M reference cells, the estimate is

Pr = (∑
M

m=1 qm) / M (1.3)

Where qm denotes the square law detector output of

the m
th

 reference cell.

The reference cells are sometimes denoted as

normalized cells because a variations of

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

295

implementation for CFAR. Thus, (1.2) and (1.3) can

be combined and arranged to equivalent target

present/absent decision of

q0 / (∑
M

m=1 qm) / M > k2 (1.4)

and in this form it can be seen that the test cell

voltage is normalized by the average of the reference

cell voltage and compared to the threshold multiplier

constant.

All the above things have to be repeated for

number of Doppler filter banks in each of the clutter

map.

IV. ANALYZING CFAR FUNCTION USING

PROFILER AND ANALYSIS

As the application runs on quad core AMD

(Advanced Micro Devices) Opteron processor that‟s

the CLASP hardware is composed of quad core

AMD Opteron processor and Linux operating system.

So to analyze the performance of CFAR function in

terms of IPC can make use AMD CodeAnalyst

performance analyzer which is developed by

Advanced Micro Devices, Inc.

AMD CodeAnalyst tool is a type of profiler that

can be used to determining the speed of a particular

operation is often known as profiling. The term

"profiling" can also be used when other information

about an operation's profile is queried -- such as the

number of calls to a function.

Profiling is used to determine which parts of a

program to optimize for speed or memory usage. A

general rule of thumb is that 90% of a program's time

is spent in just 10% of the code. Profiling enables you

to determine which 10% of the code.

So by AMD CodeAnalyst can able to get

statistics in terms of IPC by using event based

profiling where can select events CPU clock cycles

and Retired instruction means successfully executed

instruction. Can measure the efficiency of code by

keeping CPU as subsystem.

Event

select

Event

abbreviation

Event

0x76 CPU_clocks CPU clocks

not halted

0xC0 Rest_instructions Retired

instructions

Table 3: Event selection

After getting the statistics formula used to

calculate IPC & CPI are:

IPC = Ret_instructions / CPU_clocks

CPI = CPU_clocks / Re_instructions

The CPU run state affects (1) the CPU

Clocks Not Halted event. Operating systems handle

idling in one of two ways: (a) By temporarily halting

the CPU until there is work to do, or (b) By executing

an idle loop. (2) CPU clock cycles can also be

consumed by repeated loops where each loops

consists of several number of instructions that‟s

reflected by number of retired instructions.

In the first case, (a) the CPU clock halts.

CPU clock events are not counted and the resulting

CPI and IPC figures directly reflect the behavior of

the workload. (b) the CPU clock continues to run as

the idle loop executes. CPI and IPC figures then

include the effects of the idle loop. The idle loop

usually has good CPI and IPC, which produces

optimistic system-level values. The effects of the idle

loop must be isolated and mitigated to state the

correct CPI and IPC for the workload.

In second case, the workload is nothing but

number of loops that has to execute number of

instructions. Lets concentrate on this case as in

CFAR algorithm the decision of present/absence of

the target is compared and computer for each cells

and it is repeated for number of Doppler filter banks

in each of the clutter map. This is the area where

optimization can be done as there is no dependency

from one filter to another filter just checking of each

cells has been done. Thus here the real workload is

number of filters.

V. OPTIMIZING CFAR FUNCTION

To optimize CFAR, the number of instructions

executed in each of the iterations depends up on

number of filters which runs in serial order on Quad

Core AMD Opteron processor. Hence number of

instructions per clock cycles can be reduced by

applying OpenMP technique. By applying on the

iterations of filters which makes to run on processor

instead in serial it enables to run parallel iterations.

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

296

Below figure shows the serial execution by single

thread for example 12 filters.

Fig 3: Serial execution by single thread

OpenMP is an Application Program

Interface (API), jointly defined by a group of major

computer hardware and software vendors. OpenMP

provides a portable, scalable model for developers of

shared memory parallel applications. The API

supports C/C++ and Fortran on multiple

architectures, including UNIX & Windows NT.

OpenMP is an explicit (not automatic) programming

model, offering the programmer full control over

parallelization. OpenMP uses the fork-join model of

parallel execution.

Fig 4: Fork & join model of OpenMP

OpenMP programs begin as a single

process: the master thread. The master thread

executes sequentially until the first parallel region

construct is encountered.

FORK: the master thread then creates a team of

parallel threads

The statements in the program that are

enclosed by the parallel region construct are then

executed in parallel among the various team threads

JOIN: When the team threads complete the

statements in the parallel region construct, they

synchronize and terminate, leaving only the master

thread.

 OpenMP is a technique which can be

applied to for loops as the number of iterations is

compared in for loops for different filter banks for

each clutter maps. By applying parallel construct of

OpenMP to number of filters bank it divides the

serial execution by single thread into parallel

execution by several threads. Thus reduces the time

consumption of each serial iteration‟s and increases

the IPC and CPI.

This can be achieved by dividing the filters

into threads for this care to be taken while assigning

number of threads which may lead to deadlock or

race condition. So prior analysis have to be done to

know suitable number of threads that are applicable.

As OpenMP is specific to hardware that‟s processor

the number of threads depends up on processor cores.

This can be analyzed by using OpenMP

environmental variable OMP_NUM_THREADS =

number of threads. So that can check the exceeding

condition and preceding condition in terms of

performance metric chosen .i.e. IPC, CPI, total time

taken to run the application. This type of scheduling

threads is called “static scheduling”.

As processor consist of 4 cores so that it can

serve at a time for 4 number of threads if number of

threads a more than 4 means remaining threads need

to wait for CPU which again degrades performance.

And also proper care has to be taken while

scheduling threads if number threads are more than 4

threads it may lead to a deadlock condition or race

condition. Below figure shows parallel execution by

4 threads for example 12 filters.

Fig 5: Parallel execution by several threads

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

297

That‟s in each parallel section for 12 filters

it divides 3 filter per each threads which are executed

in 4 parallel section thus the time taken to run CFAR

function on Quad Core AMD Opteron processor can

be reduced and also the number of retired instruction

will be more per clock cycles thus we can see

increase in IPC and decrease in CPI. This can be

analyzed by AMD CodeAnalyst tool by profiling

application CFAR function for subsystem CPU.

If proper scheduling and assignment of

applicable threads not done means it leads to

performance degrade that‟s in terms of time taken to

run the application by processor.

VI. CONCLUSION

CLASP is one of the parts of radar signal

processing system which consist of several

functionalities. CFAR function is one of the

characteristic in CLASP which performs detecting

false alarm rate.

CLASP composed of Quad Core AMD Opteron

processor and Linux operating system. CFAR

function can be fitted optimally on processor by

increasing its performance specific to processor.

It‟s possible to analyze and to get statistic of

CFAR function by profiler AMD CodeAnalyst

performance analyzer which analyzes performance in

terms of IPC and CPI by keeping CPU as subsystem.

As the workload is to reduce number of

instructions executed per clock cycle and the total

time consumption of CFAR function which depends

upon number of filter banks can be scheduled in

parallel execution by applying OpenMP construct to

the number of filters.

Proper scheduling and assigning applicable

number of threads needed for parallel executions of

filter iterations that results into increased

performance in terms of higher IPC and lower CPI

and time taken.

VII. ACKNOWLEDGMENT

I am very thank full to my HOD Dr. M. Siddappa,

SSIT, and my internal guide Prof.K.Karunakara,

SSIT and also my external guide Jayabrata

Chakrabarty, Scientist „D‟, „E‟ Radar, DRDO/LRDE,

Bengaluru, for their guidance in my project work and

also their guidance for preparing this paper.

REFERENCES

[1] Basic Performance Measurements for AMD

Athlon™ 64, AMD Opteron™ and AMD Phenom™

Processors, Paul J. Drongowski. AMD

CodeAnalyst™ Performance Analyzer Development

Team Advanced Micro Devices, Inc. Boston Design

Center, 25 September 2008.

[2]M.I. Skolnik, Introduction to radar systems,

Boston: McGraw Hill, 2001.

[3] OpenMP Specification: http://www.openmp.org*

[4] James Reinders, Intel Threading Building Blocks:

Outfitting C++ for Multi-core Processor Parallelism.

O'Reilly Media, Inc. Sebastopol, CA, 2007.

[5] AMD CodeAnalyst Performance analyzer

http://developer.amd.com/cpu/codeanalyst/Pages/def

ault.aspx

[6] “Introduction to OpenMP”, Kyle T. Mandli,

Department of Applied Mathematics, University of

Washington, HPSC Seminar 2009.

Vol:1 Issue:1 ISSN 2278 - 215X

http://oreilly.com/catalog/9780596514808/
http://oreilly.com/catalog/9780596514808/
http://oreilly.com/catalog/9780596514808/
http://oreilly.com/catalog/9780596514808/
http://oreilly.com/catalog/9780596514808/

