
International Journal of Advances in Electronics Engineering

253

Design of High performance On-Chip bus OCP-

IP Protocol with Advanced Bus Functionalities
M DEVADAS K.LATHA
ASST.PROF,DEPT OF ECE PG SCHOLAR OF VLSI DESIGN

VAAGDEVI COLLEGE OF ENGG VAAGDEVI COLLEGE OF ENGG

WARANGAL-506005, A.P, INDIA WARANGAL-506005,A.P,INDIA

das.deva@gmail.com lathakodam@googlemail.com

+91-9052845483 +91-9573953399

Abstract-The need for on-chip bus protocols are increased

drastically for efficient and lossless communication among

large number of IP cores of SOC design. This paper

proposes a high-performance, highly scalable, bus-

independent interface between IP cores named as Open

Core Protocol-International partnership. The Open Core

Protocol (OCP) is a core centric point to point protocol

which provides lossless communication and reduces design

time, design risk, and manufacturing costs for SOC

designs . Main property of OCP is that it can be

configured with respect to the application required. The

OCP is chosen because of its advanced supporting features

such as configurable sideband control signaling and test

harness signals, when compared to other core protocols.

The OCP defines a point-to-point interface between two

communicating entities such as IP cores and bus interface

modules. One entity acts as the master of the OCP

instance, and the other as the slave .In this paper, the most

efficient bus architecture was adopted to support most

advanced bus functionalities including simple

transactions, burst transactions, lock transactions,

pipelined transactions, and out-of-order transactions with

respect to its suitable application in the real time product.

The Open Core Protocol (OCP) was designed and the

hardware modeling for that architecture was done using

VHDL. This design is Simulated and Synthesized. An

experimental result shows the efficiency of the proposed

bus architecture and interface.

Key words: Open core protocolIP Core,SOC,Vhdl

I. INTRODUCTION

In recent days, the development of SOC chips and the

reusable IP cores are given higher priority because of

its less cost and reduction in the period of Time-to-

Market. So this enables the major and very sensitive

issue such as interfacing of these IP cores. These

interfaces play a vital role in SOC and should be taken

care because of the communication between the IP

cores property. The communication between the

different IP cores should have a lossless data flow and

should be flexible to the designer too.

The design of on-chip buses can be divided into two

parts: bus interface and bus architecture. The bus

interface involves a set of interface signals and their

corresponding timing relationship, while the bus

architecture refers to the internal components of buses

and the interconnections among the IP cores.

The AMBA AHB[2], which is mainly a shared bus

composed of multiplexors, it can be permitted to a

design with small number of IP Cores. When the IP

Cores increases then the overall performance can be

reduced.

In order to improve the communication efficiency

among the large no of IP Cores two more Protocols

have been proposed. One is Advanced extensible

Interface protocol (AXI) [3], proposed by the ARM

company. AXI defines five independent channels (write

address, write data, write response, read address, and

read data channels). Each channel involves a set of

signals. AXI does not restrict the internal bus

architecture and leaves it to designers. Thus designers

are allowed to integrate two IP cores with AXI by either

connecting the wires directly or invoking an in-house

bus between them. The AXI divides the address

channel into independent write address channel and

read address channel such that read and write

transactions can be processed simultaneously.

However, the additional area of the separated address

channels is the penalty.

The other bus interface protocol is proposed by a non-

profitable organization, the Open Core Protocol –

International Partnership (OCP-IP) [1]. OCP is an

interface (or socket) aiming to standardize and thus

simplify the system integration problems. It facilitates

system integration by defining a set of concrete

interface (I/O signals and the handshaking protocol)

which is independent of the bus architecture. Based on

this interface IP core designers can concentrate on

Vol:1 Issue:1 ISSN 2278 - 215X

mailto:das.deva@gmail.com
mailto:lathakodam@googlemail.com

International Journal of Advances in Electronics Engineering

254

designing the internal functionality of IP cores, bus

designers can emphasize on the internal bus

architecture, and system integrators can focus on the

system issues such as the requirement of the bandwidth

and the whole system architecture. In this way, system

integration becomes much more efficient.

II. OPEN CORE PROTCOL INTERNATIONAL

PARTNERSHIP (OCP-IP)

The Open Core Protocol (OCP) is a core centric

protocol which defines a high-performance, bus-

independent interface between IP cores that reduces

design time, design risk, and manufacturing costs for

SOC designs. Main property of OCP is that it can be

configured with respect to the application required. The

OCP is chosen because of its advanced supporting

features such as configurable sideband control signaling

and test harness signals, when compared to other core

protocols.

The OCP defines a point-to-point interface between two

communicating entities such as IP cores and bus

interface modules. One entity acts as the master of the

OCP instance, and the other as the slave. Only the

master can present commands and is the controlling

entity. The slave responds to commands presented to it,

either by accepting data from the master, or presenting

data to the master. For two entities to communicate

there need to be two instances of the OCP connecting

them such as one where the first entity is a master and

one where the first entity is a slave.

This high-performance on-chip bus design with OCP as

the bus interface. We choose OCP because it is open to

the public and OCP-IP has provided some free tools to

verify this protocol. Our proposed bus architecture

features crossbar/partial-crossbar based interconnect

and realizes most transactions defined in OCP,

including 1) single transactions, 2) burst transactions, 3)

lock transactions, 4) pipelined transactions, and 5) out-

of-order transactions. In addition, the proposed bus is

flexible such that one can adjust the bus architecture

according to the system requirement.

III. HARDWARE DESIGN OF THE ON-CHIP BUS

The architecture of the proposed on-chip bus is

illustrated in FIGURE 1.This crossbar architecture is

employed such that more than one master can

communicate with more than one slave simultaneously.

FIGURE1: Bus Architecture

The main blocks of the Bus architecture

A)OCP Arbiter

Arbiter inputs are the request signals from the all four

master’s which are MReq1, MReq2, MReq3 and

MReq4. Arbiter will issue the MGarantx1, MGarantx2,

MGarantx3 and MGarantx4 to any one of the master’s.

Whichever the master sent MReq signal that master will

get the MGrantx signal. Arbiter gives MMaster signal

to the Address mux, Burst mux and Write Data mux as

a selection signal.

Two other inputs to the Arbiter are MBurst and

SCmd_Accept signals. MBurst signa1 comes from the

master to arbiter specifies that how many time units

arbiter should give grant signal to the master by making

a MGrantx signal to High. SCmd_Accept signal come

from the slave to the master to increment the counter

depending on the number ofs write or read operation.

 FIGURE1.1: OCP ARBITER

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

255

B) OCP Decoder:

In the ocp protocol decoder selects any one of the slave

among four slaves depending on the MAddr signal

come from the master to the decoder. The ocp decoder

selects any one of the slave by making that slave SSelx

signal to High.Decoder also gives another output signal

Decode_sel, this signal becomes selection signal for the

Resp and Read_Data_mux.

FIGURE 1.2: DECODER

C) MULTIPLEXERS:

There are five different types of multiplexors will be

used are

Address Mux: It is used to select any one of the

address which are coming from four different masters.

Burst Mux: It is used to select any one of the burst

signals which are coming from four different masters.

Write data Mux :It is used to select the data signal

which is coming from the enabled master to write into

the defined address location.

Read data Mux: It is used to select the data signal

which has to read by the slave from the location which

is given by the master.

Response Mux: After the completion of each

transaction the responded slave will give an

acknowledgement to the master through this

multiplexer.

IV. ON CHIP BUS FUNCTIONALITIES

 The advanced bus functionalities supported by

this protocol are

A) Simple transactions

B) Burst transactions

C) Lock transactions

D) Out-of-order transactions

E) Pipelined transactions

A) Simple transactions: Allows the simple read and

write operations.

B) Burst transactions:

 The burst transactions allow the grouping of

multiple transactions that have a certain address

relationship, and can be classified into multi-request

burst and single-request burst according to how many

times the addresses are issued. FIGURE 2 shows the

two types of burst read transactions. The multi-request

burst as illustrated in FIGURE 2(a) where the address

information must be issued for each command of a

burst transaction (e.g., A11, A12, A13 and A14). This

may cause some unnecessary overhead. In the more

advanced bus architecture, the single-request burst

transaction is supported. As shown in FIGURE 2(b),

which is the burst type defined in AXI, the address

information is issued only once for each burst

transaction

C) Lock transactions:

 Lock is a protection mechanism for masters that have

low bus priorities. Without this mechanism the

read/write transactions of masters with lower priority

would be interrupted whenever a higher-priority master

issues a request. Lock transactions prevent an arbiter

from performing arbitration and assure that the low

priority masters can complete its granted transaction

without being interrupted.

Figure 2 .Burst transactions

D) Out-of-order transactions:

The out-of-order transactions allow the return order of

responses to be different from the order of their

requests. These transactions can significantly improve

the communication efficiency of an SOC system

containing IP cores with various access latencies as

illustrated in FIGURE 3. In FIGURE 3(a) which does

not allow out-of-order transactions, the corresponding

responses of A21 and A31 must be returned after the

response of A11. With the support of out-of-order

transactions as shown in FIGURE3(b), the response

with shorter access latency (D21, D22 and D31) can be

returned before those with longer latency (D11-D14)

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

256

and thus the transactions can be completed in much less

cycles.

Figure 3.Out of order transactions

E) Pipelined transactions (outstanding transactions)

Figure 4(a) and 4(b) show the difference between non-

pipelined and read transactions. In FIGURE 4(a), for a

non-pipelined transaction a read data must be returned

after its corresponding address is issued plus a period of

latency. For example, D21 is sent right after A21 is

issued plus t. For a pipelined transaction as shown in

FIGURE8(b), this hard link is not required. Thus A21

can be issued right after A11 is issued without waiting

for the return of data requested by A11 (i.e., D11-D14).

FIGURE4: Pipelined transactions

Table1: control inputs

Control Command

000 Idle

001 Simple Write

010 Simple Read

011 Burst Write

100 Burst Read

101 Out of order Write

110 Out of order Read

VI.EXPERIMENTAL RESULTS

The simulation results when 4 masters and 4 slaves are

used are shown below where all masters can issue all

transactions.

In the figure5-for simple write operation the

corresponding control input is 001 as shown in Table1

and the given data(mwdata signal) will be stored in the

applied address location(maddr) .The selection of

master will be done by high m_enable signal.Then the

arbiter will generates M grantsignal for selected master.

As maddr and mwdata signals passes through the

multiplexors and converted to multiplexed signals. The

decoder will select any one of the slave according to

maddr,then ihe simple write operation is performed by

this selected slave. After completion of transaction

slave will send scmdaccept signal as acknowledgement

to the master.similarly for simple read operation the

control input is 010 and m_addr is the location from

where we need data.slave will give scmdaccept signal

to master after transaction. The slave will give read data

as s_data signal to the master.

Figure6-shows burst operations. For burst write

operation the control input is 011 and we have to give

address and data signals, burst size also. For 4- burst

,ocp_top/size signal is 000 and for 8-burst 001 and for

16-burst 010 is the size. We have given address as

0000000000000 then 4 consecutive locations can be

generated for 4-burst and the input data can be write in

that locations. Similarly for burst read control signal is

100. The data in consecutive locations can be read by

the slave which is selected by the decoder and will give

that data as sdata to the master.

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

257

FIGURE5-SIMPLE TRANSACTIONS

FIGURE 6 BURST TRANSACTIONS

FIGURE7-PIPELINED TRANSACTIONS

FIGURE 8 OUT OF ORDER TRANSACTIONS

Figure7 shows pipelined transactions by which we can

issue control signals for different transactions without

waiting for return of data requested.Without pipelined

transactions period of latency will occur.Figure8-shows

out-of-order transactions in which the control input for

out-of-order write is 101 and for out-of-order read

110.This is a non-sequential transaction which allows

the order of responses to be different from the order of

their requests.we have signal inputs as address,data and

masterenableand size which gives number of non

sequential locations in which data can be written.after

operation slave will send acknowledgement to

master.similarly for out-of-order read the data can be

read from non cequential locations by the selected slave

and given as data to the master

Timing Summary:

 Minimum period: 25.498ns (Maximum Frequency:

39.219MHz)

 Minimum input arrival time before clock: 8.158ns

 Maximum output required time after clock: 4.063ns

 Maximum combinational path delay: No path found

VII.CONCLUSION

 Cores with OCP interfaces and OCP interconnect

systems enable true modular, plug-and-play

integration; allowing the system integrators to choose

cores optimally and the best application interconnect

system. This allows the designer of the cores and the

system to work in parallel and shorten design times. In

addition, not having system logic in the cores allows the

cores to be reused with no additional time for the core

to be re-created. Depending upon the real time

application these intellectual properties can be used.

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

258

The simulation result shows that the communication

between different IP cores using OCP is proper. The the

OCP is designed and synthesized and observed HDL

Synthesis, final Report, device utilization and Timing

summary .

 REFERENCES

[1] Open Core Protocol (OCP) Specification,

http://www.ocpip.org/home.

[2] Advanced Microcontroller Bus Architecture (AMBA)

Specification Rev 2.0 & 3.0, http://www.arm.com.
[3] N.Y.-C. Chang, Y.-Z. Liao and T.-S. Chang, “Analysis of Shared-

link AXI,” IET Computers & Digital Techniques, Volume 3, Issue 4,

pages 373-383, 2009.
[4] Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y. Chung, K.-M.

Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate Transaction Level

Modeling of an Extended AMBA2.0 Bus Architecture,” Design,
Automation, and Test in Europe, pages 138-139, 2005.

[5] G. Schirner and R. Domer, “Quantitative Analysis of Transaction

Level Models for the AMBA Bus,” Design, Automation, and Test in
Europe, 6 pages, 2006.

[6]CoWarewebsite,http://www.coware.com

Vol:1 Issue:1 ISSN 2278 - 215X

http://www.ocpip.org/home
http://www.arm.com/

