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Abstract—Electrocardiogram (ECG) data compression 

algorithm is needed to reduce the amount of data to be 

transmitted, stored and analyzed, without losing the clinical 

information content. This work investigates a set of ECG data 

compression schemes to compare their performances in 

compressing ECG signals. These schemes are based on transform 

methods such as discrete cosine transform (DCT), fast fourier 

transform (FFT), discrete sine transform (DST), and their 

improvements. An improvement of a discrete cosine transform 

(DCT)-based method for electrocardiogram (ECG) compression 

is also presented as DCT-II. A comparative study of performance 

of different transforms is made in terms of Compression Ratio 

(CR) and Percent root mean square difference (PRD).The 

appropriate use of a block based DCT associated to a uniform 

scalar dead zone quantiser and arithmetic coding show very good 

results, confirming that the proposed strategy exhibits 

competitive performances compared with the most popular 

compressors used for ECG compression. Each specific transform 

is applied to a pre-selected data segment from the CSE database, 

France and then compression is performed. 

Keywords— ECG, compression, transform methods, CR, 

PRD. 

I.  Introduction   
      Compression connotes the process of starting with a source 
of data in digital form (usually either a data stream or a stored 
file) and creating a representation that uses fewer bits than the 
original [1]. The aim is to reduce storage requirements or 
transmission time when such information is communicated 
over a distance. Ideally one needs the compression process to 
be reversible. Suppose a discrete time signal s(n) is 
compressed and then reconstructed, that is, the inverse of the 
compression process is performed to yield s^(n). The error 
signal is defined as in (1): 

e(n) = s(n) – s^(n)                                 (1) 

      The reconstructed signal can be alternatively taken as an 
additive noise contaminated version of the original by 
rewriting the above equation as in (2): 

                    s^(n) = s(n) + w(n)                               (2) 

      where w (n) = - e (n) is the noise. For a loss less 
compression e (n) is identically zero [1]. 

      A typical computerized signal processing system acquires 
a large amount of data that is difficult to store and transmit. 
Data compression is nothing more-or-less than effective 
coding designed to correct the over representation that occurs 

in digital data handling systems. The main aim of data 
compression is  (a) To increase the storage efficiency. (b) 
Transmission bandwidth conservation. (c) Reducing the 
transmission time. The main goal of any compression 
technique is to achieve maximum data volume reduction while 
preserving the significant features [2] and also detecting and 
eliminating redundancies in a given data set. 

      ECG data compression algorithms have been mainly 
classified into three major categories [3]: 1) Direct time-
domain techniques, e.g., turning point (TP), amplitude-zone-
time epoch coding (AZTEC) [4], coordinate reduction time 
encoding system (CORTES) and Fan algorithm. 2) 
Transformational approaches [3], e.g., discrete cosines 
transformation (DCT), fast fourier transform (FFT), discrete 
sine transform (DST), wavelet transform (WT) etc. 3) 
Parameter extraction techniques, e.g., Prediction and Vector 
Quantization (VQ) methods [2]. 

      Direct data compression methods rely on prediction or 
interpolation algorithms, which try to diminish redundancy in 
a sequence of data by looking at successive neighboring 
samples. Prediction algorithms employ a prior knowledge of 
previous samples, whereas interpolation algorithms use a prior 
knowledge of both previous and future samples. The direct 
data compression methods base their detection of 
redundancies on direct analysis of actual sample. Direct signal 
compression methods are also known as time domain 
techniques dedicated to compression of signals. The mode of 
operation is to extract a subset of significant samples from the 
original sample set. Which samples are significant, depends on 
the underlying criterion for the sample selection process. 
These algorithms suffer from sensitiveness to sampling rate, 
quantization levels and high frequency interference. It fails to 
achieve high data rate along with preservation of clinical 
information [5].  

      In Transform based techniques [6] compressions are 
accomplished by applying an invertible orthogonal transform 
to the signal. Due to its de-correlation and energy compaction 
properties the transform based methods achieve better 
compression ratios [7]. Transformation methods involve 
processing of the input signal by a linear orthogonal 
transformation and encoding of output using an appropriate 
error criterion. For signal reconstruction an inverse 
transformation is carried out and the signal is recovered with 
some error. Various orthogonal transformations include DCT, 
DST, FFT and WAVELET transforms etc. 
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      The parameter extraction method includes extracting a 
particular parameter of the signal. The extracted parameters 
are subsequently utilized for classification based on a prior 
knowledge of the signal features. Direct and transformation 
methods are reversible, while parameter extraction method is 
irreversible. 

      In this work, ECG signal is compressed using the Discrete 
Cosine Transform (DCT), Fast Fourier Transform.(FFT), 
Discrete Sine Transform(DST), and Type 2 Discrete Cosine 
Transform (DCT-II). 

II. need for ecg signal 
compression 

The need for ECG compression exists in many transmitting 
and storage applications. Transmitting the ECG signal through 
telephone lines, for example, may save a crucial time and 
unnecessary difficulties in emergency cases. Effective storage 
is required of large quantities of ECG information in the 
intensive coronary care unit, or in Long-term (24–48 hours) 
wearable monitoring tasks (Holter). Holter monitoring usually 
requires continuous 12 or 24-hours ambulatory recording. For 
good diagnostic quality, each ECG lead should be sampled at 
a rate of 250–500 Hz with 12 bits resolution. The information 
rate is thus 11–22 Mbits/hour/lead approximately. The 
monitoring device must have a memory capacity of about 
100– 200 Mbytes for a 3-lead recording. Memory costs may 
render such a solid state Holter device impractical. In practice, 
efficient data compression may be achieved only with lossy 
compression techniques (which allow reconstruction error). In 
ECG signal compression algorithms the goal is to achieve a 
minimum information rate, while retaining the relevant 
diagnostic information in the reconstructed signal. All ECG 
compression algorithms have used simple mathematical 
distortion measures such as the percentage rms difference 
(PRD) for evaluating the reconstructed signal. It is used to 
evaluate the compression result. 

III. performance evaluation 
Any performance criterion used to evaluate an ECG 

compression algorithm must include two factors Compression 
ratio, CR and Percent root mean square difference, PRD. In 
present work we have tested the data on the basis of these two. 

A. Compression Ratio (CR) 
This is one of the most important parameters in data 

compression algorithms which specifies the amount of 
compression. All data compression algorithms minimizes data 
storage by reducing the redundancy wherever possible, 
thereby increasing the compression ratio [7]. The compression 
ratio (CR) is defined as the ratio of the number of bits 
representing the original signal to the number of bits required 
to store the compressed signal. A high compression ratio is 
typically desired [2]. A data compression algorithm must also 
represent the data with acceptable fidelity while achieving 
high CR, given by (3).  





B. Error Criteria and Distortion 
Methods 
One of the most difficult problems in ECG compression 

applications and reconstruction is defining the error criterion. 
The purpose of the compression system is to remove 
redundancy and irrelevant information. Consequently the error 
criterion has to be defined so that it will measure the ability of 
the reconstructed signal to preserve the relevant information. 
Since ECG signals generally are compressed with lossy 
compression algorithms, we have to have a way of quantifying 
the difference between the original and the reconstructed 
signal, often called distortion. Different objective error 
measures namely; root mean square error (RMSE), percentage 
root mean difference (PRD), signal to noise ratio (SNR) are 
used for calculation of reconstruction error. The most 
prominently used distortion measure is the Percent Root mean 
square Difference (PRD) [8] that is given by (4) 

                    (4) 

where x  is the original signal, x’  is the reconstructed 
signal and Lb is the length of the block or sequence over which 
PRD is calculated. PRD provides a numerical measure of the 
residual root mean square (rms) error. 

IV. transformation methods 
In this work we have compared the performance of four 

different transformation methods for ECG compression and 
then their performance is evaluated. The various compression 
techniques have been discussed below: 

A. Discrete Cosine Transform (DCT) 
A discrete cosine transform (DCT) expresses a sequence of 

finitely many data points in terms of a sum of cosine functions 
oscillating at different frequencies [9]. DCTs are important to 
numerous applications in science and engineering, from lossy 
compression of audio (e.g. MP3) and images (e.g. JPEG) 
(where small high-frequency components can be discarded), to 
spectral methods for the numerical solution of partial 
differential equations. The use of cosine rather than sine 
functions is critical in these applications. For compression, it 
turns out that cosine functions are much more efficient 
whereas for differential equations the cosines express a 
particular choice of boundary conditions [10]. In particular, a 
DCT is a Fourier-related transform similar to the discrete 
Fourier transform (DFT), but using only real numbers. DCTs 
are equivalent to DFTs of roughly twice the length, operating 
on real data with even symmetry (since the Fourier transform 
of a real and even function is real and even), where in some 
variants the input and/or output data are shifted by half a 
sample. 

Discrete Cosine Transform is a basis for many signal and 
image compression algorithms due to its high de-correlation 
and energy compaction property [7]. A discrete Cosine 
Transform of N sample is defined as in (5): 
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              (5) 

u=0,1,……..,N-1, 

where      for u =0 

                =1       otherwise. 

The function f(x) represents the value of xth samples of 
input signals [7]. F(u) represents a DCT coefficients. The 
inverse DCT is defined in similar fashion as in (6): 

          (6) 

x=0, 1,… N-1. 

 

B. Fast Fourier Transform (FFT) 
A fast Fourier transform (FFT) [11] is an efficient 

algorithm to compute the discrete Fourier transform (DFT) 
and it’s inverse [12]. There are many distinct FFT algorithms 
involving a wide range of mathematics, from simple complex-
number arithmetic to group theory and number theory. A DFT 
decomposes a sequence of values into components of different 
frequencies but computing it directly from the definition is 
often too slow to be practical. An FFT is a way to compute the 
same result more quickly. Computing a DFT of N points in the 
naive way, using the definition, takes O(N

2
) arithmetical 

operations [13], while an FFT can compute the same result in 
only O(N log N) operations. The difference in speed can be 
substantial, especially for long data sets where N may be in the 
thousands or millions—in practice, the computation time can 
be reduced by several orders of magnitude in such cases, and 
the improvement is roughly proportional to N / log(N). This 
huge improvement made many DFT-based algorithms 
practical; FFTs are of great importance to a wide variety of 
applications, from digital signal processing and solving partial 
differential equations to algorithms for quick multiplication of 
large integers. The most well known FFT algorithms depend 
upon the factorization of N, but there are FFTs with O (N log 
N) complexity for all N, even for prime N. Many FFT 
algorithms only depend on the fact that is an Nth primitive 
root of unity, and thus can be applied to analogous transforms 
over any finite field, such as number-theoretic transforms. 

     Fast Fourier Transform is a fundamental transform in 
digital signal processing with applications in frequency 
analysis, signal processing etc [7]. The periodicity and 
symmetry properties of DFT are useful for compression. The 
u

th
  FFT coefficient of length N sequence {f(x)} is defined as 

in (7): 

                      (7) 

u=0,1,….N-1 

And its inverse transform is calculated from (8): 

                    (8) 

x=0,1,….N-1 

C. Discrete Sine Transform (DST) 
Discrete sine transform (DST) [14] is a Fourier-related 

transform similar to the discrete Fourier transform (DFT), but 
using a purely real matrix. It is equivalent to the imaginary 
parts of a DFT of roughly twice the length, operating on real 
data with odd symmetry (since the Fourier transform of a real 
and odd function is imaginary and odd), where in some 
variants the input and/or output data are shifted by half a 
sample. Like any Fourier-related transform, discrete sine 
transforms (DSTs) express a function or a signal in terms of a 
sum of sinusoids with different frequencies and amplitudes. 
Like the discrete Fourier transform (DFT), a DST operates on 
a function at a finite number of discrete data points. The 
obvious distinction between a DST and a DFT is that the 
former uses only sine functions, while the latter uses both 
cosines and sines (in the form of complex exponentials). 
However, this visible difference is merely a consequence of a 
deeper distinction: a DST implies different boundary 
conditions than the DFT or other related transforms [15]. 

Formally, the discrete sine transform is a linear, invertible 
function F: R

N
 -> R

N
 (where R denotes the set of real 

numbers), or equivalently an N × N square matrix. There are 
several variants of the DST with slightly modified definitions. 
The N real numbers x0,…, xN-1 are transformed into the N real 
numbers X0, ..., XN-1 according to (9): 

              (9) 

k=0,……N-1 

 

D. Discrete Cosine Transform-II (DCT-
II) 
The most common variant of discrete cosine transform is 

the type-II DCT [16]. The DCT-II is typically defined as a 
real, orthogonal (unitary), linear transformation by the formula 
in (10): 

       (10) 

for N inputs xn and N outputs , where  is the 

Kronecker delta (= 1 for k = 0 and = 0 otherwise). 

DCT-II can be viewed as special case of the discrete 
fourier transform (DFT) with real inputs of certain symmetry 
[17]. This viewpoint is fruitful because it means that any FFT 
algorithm for the DFT leads immediately to a corresponding 
fast algorithm for the DCT-II simply by discarding the 
redundant operations. 

The discrete Fourier transform of size N is defined by (11): 

                                      (11) 

where is an Nth primitive root of unity. In 
order to relate this to the DCT-II, it is convenient to choose a 
different normalization for the latter transform [17] as in (12): 
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This normalization is not unitary, but it is more directly 
related to the DFT and therefore more convenient for the 
development of algorithms. Of course, any fast algorithm for 
Ck trivially yields a fast algorithm for   although the exact 

count of required multiplications depends on the 
normalization. In order to derive from the DFT formula, 
we can use the identity =  to write 
(13) 

  

+  

                                                               
(13) 

where is a real-even sequence of length 4N, defined as 
follows for 0 n < N: 

                           (14) 

Thus, the DCT-II of size N is precisely a DFT of size 4N, 
of real-even inputs, where the even-indexed inputs are zero. 

V. the proposed algorithms 
The various compression techniques DCT, FFT, DST and 

DCT-II algorithms are compared with PRD and Compression 
ratio CR and best suitable is considered. The algorithms are 
performed on CSE database shown in Fig. 1. 

 

Figure 1.  The ECG signal before compression 

A. The DCT compression algorithm 

 Separate the ECG components into three components 
x, y, z. 

 Find the frequency and time between two samples. 

 Find the DCT of ECG signal and check for DCT 
coefficients (before compression) =0, increment the 
counter A if it is between +0.22 to -0.22 and assign to 
Index=0.  

 Check for DCT coefficients (after compression) =0, 
increment the Counter B.  

 Calculate inverse DCT and plot decompression, error.  

 Calculate the compression ratio CR and PRD.  

The plot is shown in Fig. 2. 

 

Figure 2(a).  The ECG signal after DCT compression 

 

Figure 2(b).  The Error signal after DCT compression 

Figure 2.  DCT compression analysis 

 

B. The FFT compression algorithm 

 Separate the ECG components into three components 
x, y, z. 

 Find the frequency and time between two samples. 

 Find the FFT of ECG signal and check for FFT 
coefficients (before compression) =0, increment the 
counter A if it is between +25 to-25 and assign to 
Index=0.  

 Check for FFT coefficients (after compression) =0, 
increment the Counter B.  

 Calculate inverse FFT and plot decompression, error.  

 Calculate the compression ratio CR and PRD.  

The plot is shown in Fig. 3. 
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Figure 3(a).  The ECG signal after FFT compression 

 

Figure 3(b).  The Error signal after FFT compression 

Figure 3.  FFT compression analysis 

C. The DST compression algorithm 

 Separate the ECG components into three components 
x, y, z. 

 Find the frequency and time between two samples. 

 Find the DST of ECG signal and check for DST 
coefficients (before compression) =0, increment the 
counter A if it is between +15 to-15 and assign to 
Index=0.  

 Check for DST coefficients (after compression) =0, 
increment the Counter B.  

 Calculate inverse DST and plot decompression, error.  

 Calculate the compression ratio CR and PRD.  

The plot is shown in Fig. 4. 

 

Figure 4(a).  The ECG signal after DST compression 

 

Figure 4(b).  The Error signal after DST compression 

Figure 4.  DST compression analysis 

 

D. The DCT-II compression algorithm 

 Partition of data sequence x in Nb consecutive blocks 
bi, i =0, 1,……..,Nb-1, each one with Lb samples. 

 DCT computation for each block. 

 Quantization of the DCT coefficients. 

  Lossless encoding of the quantized DCT coefficients. 

Increasing the block size increases the CR and the DCT 
computing time. Various results show that increasing the 
block size above a certain point results in a very modest CR 
gain, while the processing time increases. The type II DCT is 
commonly used for data compression due to its greater 
capacity to concentrate the signal energy in few transform 
coefficients.  

The algorithm is explained in detail as: 

 Let bi[n], n=0,1,…,Lb-1,represent the Lb values in 
block bi. 

 The one-dimensional DCT-II of this block generates a 
transformed block Bi constituted by a sequence of Lb 
coefficients Bi[m], m=0,1,…..Lb-1,given by (15): 

    (15) 

 
 

where cm=1 for 1  m Lb-1 and co=(1/2)
(1/2)

. 
      The DCT can be seen as a one-to-one mapping for 
N point vectors between the time and the frequency 
domains. The coefficient Bi[0],which is directly 
related to the average value of the time-domain block 
is called DC coefficient and the remaining coefficients 
of a block are called AC coefficients. 

Given Bi, bi can be recovered by applying the inverse 
DCT-II: 

      (16) 

n=0,1,….Lb-1 

 

 To quantize Bi we use quantization vector q. Each 
element q[n], n=0,1,….Lb-1,of q is a positive integer 
in a specified interval and represents the quantization 
step size for the coefficient Bi[n].The elements of 

the quantized DCT block obtained by the following 
operation: 

  ,n=0,1,….Lb-1     (17) 

i=0,1,…..Nb-1 

where // represents division followed by rounding to 
the nearest integer. 

 The lossless encoding of the quantized DCT 
coefficients involves run-length encoding, because the 
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quantization normally generates many null values 
followed by an entropy encoder. 

      The plot is shown in Fig. 5. 

 

 

       Figure 5(a).  The ECG signal after DCT-II 
compression 

 

     Figure 5(b).  The Error signal after DCT-II compression 

Figure 5.  DCT-II compression analysis 

VI. results and discussion 
We used data in the CSE database to test the performance 

of the four coding techniques. The ECG data is sampled at 333 
Hz. The amount of compression is measured by CR and the 
distortion between the original and reconstructed signal is 
measured by PRD. The comparison table shown in Table 1, 
details the resultant compression techniques. This gives the 
choice to select the best suitable compression method. A data 
compression algorithm must represent the data with acceptable 
fidelity while achieving high CR. As the PRD indicates 
reconstruction fidelity; the increase in its value is actually 
undesirable. Although DCT-II provides maximum CR, but 
distortion is more. So a compromise is made between CR and 
PRD. 

TABLE I.  COMPARISON OF COMPRESSION TECHNIQUES 

Method Compression Ratio PRD 

    DCT 80.8906 0.9346 

    FFT 89.5767 0.0123 

    DST 70.4073 1.1871 

  DCT-II 95.7700 1.3319 

VII. conclusions 
Among the four techniques presented, DST provides 

lowest CR and distortion is also high. DCT improves CR and 
lowers PRD. Next is FFT which gives higher CR 89.5767 with 
PRD as 0.0123. But DCT-II provides an improvement in terms 
of CR of 95.77 but PRD increases up to 1.3319. Thus an 
improvement of a discrete cosine transform (DCT)-based 
method for electrocardiogram (ECG) compression is presented 
as DCT-II in terms of amount of compression. The appropriate 
use of a block based DCT-II associated to a uniform scalar 
dead zone quantiser and arithmetic coding show very good 
results, confirming that the proposed strategy exhibits 
competitive performances compared with the most popular 
compressors used for ECG compression. 
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