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Abstract—This paper presents Xilinx vertex-5 FPGA-based 

very fast elliptic curve cryptography public key generator on 

Koblitz curves targeting for applications requiring high speed. 

The generator supports both fast computation of point 

multiplication using window method and multiple point 

multiplications with joint sparse form representations. In 

order to achieve better performance, optimized operation-

specific processing units are utilized. Throughput is enhanced 

using pipelining techniques. The generator computes point 

multiplication on average in 16.95 μs and achieves a maximum 

of 160,920 operations per second. A 2-term multiple point 

multiplication requires 35.12 μs with a maximum of 61,719 

operations per second. 

 

Keywords- Elliptic curve cryptography, Field programmable 

gate array, Elliptic curve public key generatorr, very fast elliptic 

curve cryptography public key generatory. 

I.  INTRODUCTION 

Elliptic curve cryptography offers the same level of 

security as traditional public key cryptography with 

considerably shorter keys [2]. So, it has replaced traditional 

public-key cryptosystems in environments where short keys 

are important. Public-key cryptosystems require considerable 

computation time, hence, the fact that elliptic curve 

cryptography has been shown to be faster than traditional 

public-key cryptosystems [2] is of great importance. Speed 

can be further increased by using a special class of elliptic 

curves referred to as Koblitz curves [3].  

This paper discusses FPGA-based implementation of 

elliptic curve cryptography which has attained considerable 

interest in both cryptography and FPGA communities. The 

interest comes from the fact that public-key cryptosystems 

require a lot of computation which often yield a need for 

hardware accelerator. FPGAs are feasible alternatives for 

cryptographic implementations because of the combination 

of fast performance and flexibility. 

This paper is organized as follows: In section II 

preliminaries are presented with sub-sections A,B,C and D. 

Next the main algorithms of this paper window method and 

multiple point multiplication are discussed. Finally, the 

implementation followed by analysis, results and conclusion 

will be discussed.  

II. PRELIMINARIES 

Elliptic curve defined over finite binary fields, denoted by 

F2
m
, are commonly used in practical cryptosystems. These 

curves are called binary curves. In this paper, binary curves 

of the following form are considered:  

 

E: y
2
 + xy = x

3
 + ax

2
 + b,                                (1) 

 

where a,b€F2
m
 with b ≠ 0. The additive operation of the 

group is referred to as point addition and it is defined as P3 = 

P1 + P2 where Pi € F2
m
. Point multiplication, which is a basic 

component of every elliptic curve cryptosystem, is defined 

by using point additions as follows: 

 

Q = kP = P + P + P … P,                                      (2) 

 

where Q,P€E(F2
m
) and k is an integer. P is called the base 

point and Q is the result point. Point multiplication 

decomposes into three levels of hierarchy from top to bottom 

as follows: point multiplication, point operation and finite 

field arithmetic. These hierarchy levels are discussed in the 

following sections. Each of the levels of the hierarchy is 

considered in sections A,B and C. Finally, Koblitz curves 

are discussed in section D. 

A. Point Multiplication 

Point multiplication is calculated using point doubling 

and point addition. Point doubling is a special case of point 

addition in which P3 = P1 + P2, where P1 = P2 and point 

addition is calculated as P3 = P1 + P2 where P1 ≠ P2. Both 

point additions and point doublings are used in computing 

Eq. (2) when the integer k is represented with binary 

expansion as 

                   K =                                     (3) 

 

where ki €{0,1}. Point doubling is done for all values of ki 

whereas, point addition is not needed if ki = 0. So, it is 

crucial to reduce the number of nonzeros. A simple option is 

to use a signed-bit representation, i.e., ki€{0, ±1}, called 

non-adjacent form (NAF). NAF has the property that 

adjacent bits are never both nonzero. Every k has a unique 
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NAF and it has the minimum number of nonzeros among all 

signed-bit representations [6].  

B. Point Operations 

Point doubling, point addition, and point subtraction all 

require an inversion in F2
m
. Inversions are very expensive 

and it  can be avoided by using projective coordinates where 

a point is represented with three coordinates as (X, Y, Z). 

We consider López-Dahab coordinates (LD) [12], where a 

point (X, Y, Z) represents the point (X/Z, Y/Z
2
) in affine 

(A). The LD coordinates allow an efficient mixed 

coordinate point - subtraction. If P1 = (X1, Y1, Z1) is in LD 

and P2 = (x2, y2) is in A, point addition P3 = (X3, Y3, Z3) = 

(X1, Y1, Z1) + (x2, y2) is given as follows [9]. 

  

                   A = Y1 + y2Z1
2
; B = X1 + x2Z1; 

                           C = BZ1; Z3= C
2
;                                   (4) 

   D = x2Z3; X3 = A
2
 + C(A + B

2 
+ aC); 

   Y3 = (D + X3)(AC + Z3)+ (y2 + x2)Z3
2 

C. Finite Field Arithmetic 

We chose polynomial basis as polynomial multiplication 

is fast. Adding and squaring require only one clock cycle. 

For computing inversions, we used Fermat’s Little Theorem 

as proposed by Itoh and Tsujii in [7].  

D. Koblitz Curves 

In 1985, Koblitz [1] and Miller [10] independently 

proposed the use of the additive finite abelian group of 

points on elliptic curves defined over a finite field for 

cryptographic applications. The Koblitz curves [1], or 

anomalous binary curves, are 

 

                   Ek: y
2
 + xy = x

3
 + ax

2
 + 1,                         (5) 

 

where a€{0,1}. The main advantage of Koblitz curves is 

that the Frobenius endomorphism of F2
m
 acts on points via 

τ(x, y) = (x
2
, y

2
) and is essentially free to compute. Because 

τ satisfies (τ
2
 + 2)P = μτ(P) for all points P € E(F2

m
) where μ 

= (−1)
1−a

, we can consider τ as a complex number satisfying 

τ
2
 − μτ + 2 = 0, i.e., τ = (μ+√−7)/2. Thus, computing kP, 

where k€Z and P€Ek (F2
m
), can be done using a 

representation of k involving powers of τ instead of the 

usual binary representation using powers of 2, yielding a 

point multiplication algorithm similar to the binary “double-

and-add” method in which the point doublings are replaced 

by applications of the Frobenius [12]. Solinas [12] shows 

how the non-adjacent form (NAF) and window-NAF 

methods can be extended to τ-adic expansions.  

III. WINDOW METHODS 

If enough storage space is available, point multiplication 

can be sped up with window methods which involve pre-

computations with P and process w bits of k at a time. The 

easiest way to width-w τNAF is by replacing certain strings 

of 0, 1, and -1 with window values. The resulting 

representation has an average weight of H(k) = l/(w + 1). 

The pre-computed points, P3, P5, P7 and P9 are given in 

Table 1.  

An algorithm for width-w window point multiplication in 

Koblitz curves is given in Alg. 1. 

 

Algorithm 1. Window algorithm 

Input: Integer k, point P 

Output: Result point Q = kP 

kl−1, kl−2 . . . k1k0 ← w-τNAF(k) 

P1, P3, . . . , P2
(w-1)

 – 1 ← Pre-compute(P) 

Q ← O 

for i = l − 1 down to 0 do 

Q ← Φ(Q) 

if ki ≠ 0 then 

Q ← Q + sign(ki)P|ki| 

end if 

end for 

Q ← xy(Q) 

IV. MULTIPLE POINT MULTIPLICATION 

Sum of n elliptic curve point multiplications is called 

multiple point multiplication and it is defined by  

 

                                                   (6) 

 

where kiPi are point multiplications as defined by (2). All n 

point multiplications can be computed simultaneously with 

the so-called Shamir’s trick [6]. Consider the case n = 2. The 

integers are represented as a table with k(1) and k(2) as rows. 

First, P1 + P2 is pre-computed. Analogously with the 

double-and-add algorithm, point multiplication proceeds 

column by column so that P1 is added if the column is 10, 

the point P2 if 01, and the pre-computed point if 11.  

Generalization of Shamir’s trick for n point 

multiplications is straightforward but requires more pre-

computations. Because zero columns do not require point 

additions, it is possible to reduce computational cost by 

representing k(i) with signed-binary representations and 

choosing the representations which maximize the number of 

zero columns. A representation maximizing the number of 

zero columns is called τ -adic joint sparse form (τJSF). An 

algorithm for computing τJSF for n = 2 was presented in 

[10].  

An algorithm for n-term multiple point multiplication on 

Koblitz curves is given in Alg. 2. 

 

Algorithm 2. Multiple point multiplication 
Input:  n integers k(1), . . . , k(n), n points P(1), . . . , P (n) 

Output: Result point  

kl−1kl−2 . . .k1k0_ ← τJSF(k(1), . . . , k(n)) 

P1, P2, . . . ,P(3
n
-1)/2 ← Pre-compute(P(1), . . . , P (n)) 

Q ← O 

for i = l − 1 down to 0 do 

       Q ← Φ(Q) 
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              if ki ≠ 0 then 

                     Q ← Q + sign(ki)P|ki| 

end if 

      end for 

Q ← xy(Q) 

V. IMPLEMEMNTATION 

    The aim of the fast generator is to provide high 

throughput. The motivation for designing the generator is to 

use it for PLA. So, it must support both 1-term and 2-term 

(multiple) point multiplications which are used in signing 

and verifying packets.  

Algs. 1 and 2 share a common structure, i.e. both require 

conversion for integer(s), pre-computation, have the same 

for-loop, and convert the point Q back to A in the end. This 

paper utilizes this common structure in implementing the 

algorithms and use operation-specific processing units in 

order to increase efficiency. 

The accelerator operates as follows. First, integer(s) k(i) 

and point(s) P(i) are sent to the τNAF/JSF converter and pre-

processor, respectively. The converter converts integer(s) to 

either width-4 τNAF or τJSF and saves the result into a 

buffer. Simultaneously, the pre-processor performs pre-

computations and stores points into the registers. When both 

converter and pre-processor are ready, the main processor 

executes the for-loop of Algs. 1 and 2. The control logic 

selects one of the pre-computed points according to the 

current ki and the main processor adds or subtracts it to or 

from a temporary value Q = (X, Y, Z) and performs the 

following Frobenius endomorphisms. When the for-loop has 

been executed, the control logic enables the postprocessor 

which computes back the affine representation of the point 

Q. 

A. τNAF/JSF Converter 

The τNAF/JSF converter supports computation of two 

representations: width-4 τNAF and 2-term τJSF. The 

converter first converts all integers into τNAF 

simultaneously with two τNAF converters which are 

implemented as presented in [7]. Parallel processing was 

used in order to minimize total computation time.  

A. Preprocessor  

The pre-processor is based on the architecture presented 

in [5], but it uses polynomial basis instead of normal basis. 

Fig.1 depicts the architecture of the pre-processor. The 

storage RAM is used for storing temporary variables during 

pre-computations and it is implemented with embedded 

memory. The pre-processor is controlled by a finite state 

machine.  

Points that are pre-computed in the pre-processor are 

listed in Tables 1 and 2. They are represented in affine 

coordinate so that (4) can be used in the for-loop. Pre-

computations utilize unified point addition and subtraction 

formulae which compute both P1+ P2 and P1− P2 with only 

 Figure 1. Pre-processor 

TABLE 1.  Pre-computed points for single point multiplication. 

Pre-computed points for ω = 4 bits 

ω Point Operation Arithmetic 

0001 P1 P (x, y) 

010 î P3 Φ2(P) – (P) (x4,y4) + (x, y + x) 

0 101 P5 Φ2(P) + (P) (x4,y4) + (x, y) 

1 00 î P7 Φ3(P) – (P) (x8,y8) + (x, y + x) 

1001 P9 Φ3(P) +(P) (x8,y8) + (x, y) 

TABLE 2. Pre-computed points for multiple point multiplication. 

K2k1 point K2k1 point 

00 R0 = 0   

01 R1 = P1                0î -R1 

10 R2 = P2                î0 -R2 

1î R3 = R2 + R1        î1 -R3 

11 R4 = R2 - R1         îî -R4 

 

one inversion [6]. The number of inversions is further 

reduced using the so-called Montgomery’s trick which 

trades inversions to multiplications [6]. If n = 2, only two 

points need to be pre-computed. 

B. Main Processor  

The main processor implements the for-loop of Algs. 1 

and 2. This for-loop dominates the computational 

requirements and, hence, its efficient computation is 

necessary. The sequential nature of the loop forbids 

computing point operations in parallel. Parallelism can be 

used in Frobenius endomorphisms (squaring for all 

coordinates computed in parallel) and point additions. 

However, data dependencies usually prevent efficient use of 

parallelism in point additions and cause poor latency-area 

products.  Details of the method are available in [8]. The 

method computes consecutive point additions and Frobenius 

endomorphisms efficiently with parallel field multipliers by 

interleaving successive operations. The key observation is 

that the computation of Z3 in (4) does not require Y1. Hence, 

the Z coordinate of the next point addition can be computed 

simultaneously with the Y coordinate of the previous point 

addition. The method redefines (4) so that the computation is 

performed with eight sub-computations each including one 

multiplication. We use four multipliers so that one of them is 



International Journal of Advances in Computer Networks and Security 

26 

 

devoted for the Z coordinate computations, (7)–(8), one for 

the X coordinate computations, (9)–(10), and two for the Y 

coordinate computations, (11)–(14).  

 

                     z0 :  E =  x2Z1                                              (7) 

 

                 z1 :                       (8) 

 

x0 :  G = y2Z1
2                                                                

(9) 

x1 :  X3 =  C + (F + G + Y1)  + (G + Y1)
2    

(10)
 

 y0 :  H =  C(G + Y1)  + Z3                                         (11) 

   y1 :  D = x2Z3                                               (12) 

 y2 :  J = Z3
2 
(x2+ y2 )                                    (13) 

y3 : Y3 = H(D + X3) + J                                (14) 

 

The computation schedule, given in Fig. 2, clearly shows 

that the effective critical path is 2 multiplications per point 

addition. Because each multiplier is used for only two sub-

computations, specialized processing units optimized for 

these sub-computations were designed. The processing units 

consist of a multiplier and several adders and squarers as 

shown in Fig. 3. The processing units compute the sub-

computations so that their latency is the latency of 

multiplication plus one clock cycle. 

When a result coordinate is ready (after z1, x1, and y2/3), 

a squarer is used for computing Frobenius endomorphisms 

for that coordinate. Each Frobenius endomorphism requires 

one clock cycle. This architecture is presented in more detail 

in [8]. 

 
Figure 2. Computation schedule of the main processor. Operations 

connected with a line belong to the same point addition. 

 

(a)

 
(b) 

 
(c) 

 
 
Figure. 3. Processing units for (a) z0 and z1, (b) x0 and x1, and (c) y0, y1, y2, 

and y3. 

B. Postprocessor 

The postprocessor maps the output of the main processor 

from LD to A, i.e. it computes the last line of Algs. 1 and 2. 

The computation requires one inversion, one squaring, and 

two multiplications, of which the inversion is the most 

complex operation by far. Inversions can be computed with 

the Fermat’s Little Theorem as suggested by Itoh and Tsujii 

[7] because it uses successive squaring and multiplications 

which allows reusing the same hardware for inversion and 

other operations required. The architecture of the 

postprocessor was presented in [8] and it is depicted in Fig. 

4. 

VI. ANALYSIS AND OPTIMIZATIONS 

The latencies of operations needed in Algs. 1 and 2 are 

listed in Table 3. The latencies of pre-processor, main-

processor, and postprocessor depend on the latency of 

multiplication in F2
m
 denoted by M.   

      Digit-serial multipliers are used and their latencies are 

given by 

                                     (15) 

 

where m is the field size (m = 163) and D is the digit size. 

The digit size, D, defines both the latency and the size of a 

multiplier. Different D can be used for multipliers in 

different parts of the generator with the exception that all 

multipliers of the main processor must have the same D. 

If fast multipliers (large D) are used, the constant latency of 

the τNAF/JSF converter becomes a bottleneck. In order to 

avoid this, we optimized the generator for 1-term point 

multiplication by choosing D so that τNAF/JSF conversions 

are computed slightly faster than the other operations of 

window point multiplications. Hence, we selected D = 4 for 

 

Figure 4. Postprocessor 

 



International Journal of Advances in Computer Networks and Security 

27 

 

the pre-processor, D = 13 for the main processor, and D = 3 

for the postprocessor. The postprocessor was selected to be 

faster than the τNAF/JSF converter in order to ensure that 

inversions do not become the bottleneck. 

VII.  RESULTS AND COMPARISONS 

The architecture was described in VHDL and synthesized 

for Xilinx vertex-5 FPG with ISE 9.1 design software. Table 

3 presents the area consumption of the generator and its 

components as given by the design software. The main 

processor expectedly dominates in the area consumption. 

    Computation times are presented in Table 4. The 

computation time is the time in which the generaor 

computes a single operation with an average H(k) when the 

pipeline is empty, i.e. when no wait delays occur. In all 

cases throughput is bounded by the main processor.  

Our generator is clearly faster than most published 

implementations, although comparisons are difficult 

between different FPGAs.  

The superiority of Koblitz curves over general curves is 

evident. The fastest general curve implementation using the 

same field size (m = 163) was recently presented in [6] and 

it achieves computation time 19.55μs and throughput 51,120 

 

TABLE 3. Area Consumption 

 

Component LUTs FFs RAMs 

Converter 5,238 3,543 7 

Pre-processor 2,934 1,543 14 

Main processor 15,073 10,978 0 

Postprocessor 2,857 2,984 0 

 
 

TABLE 4. Latencies 

 

Operations Latency( clock cycles) 

Conversion, w-Tnaf 500 

Conversion, tJSF 500 

Pre-computation, w=4 18M + 300 

Pre-computation, n=2 13M + 414 

Pre-processor 16M + 656 

Main processor 2H(k)(M + 1) + l  + 6 

Postprocessor 11M + 175 

 

ops in a Virtex-4 FPGA. These values are inferior to our 

accelerator. 

VIII. CONCLUSIONS  

We described an FPGA-based very fast elliptic curve 

cryptography public key generator on NIST K-163 Koblitz 

curve. The generator utilizes window methods and multiple 

point multiplications. It uses dedicated processing units for 

different parts of the algorithms and supports pipelined 

computation.  
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