
International Journal of Advances in Computer Networks and Security

23

Very Fast Elliptic Curve Cryptography Public-key

Generator on Koblitz Curves

Gebre Tsegay

Dept. of Computer Engineering

Defense Institute of Advanced Technology (DIAT)

Pune, India

gtswefri@yahoo.com

MM. Kuber

Dept. of Computer Engineering

Defense Institute of Advanced Technology (DIAT)

Pune, India

mmkuber@gmail.com,mmkuber@yahoo.com

Abstract—This paper presents Xilinx vertex-5 FPGA-based

very fast elliptic curve cryptography public key generator on

Koblitz curves targeting for applications requiring high speed.

The generator supports both fast computation of point

multiplication using window method and multiple point

multiplications with joint sparse form representations. In

order to achieve better performance, optimized operation-

specific processing units are utilized. Throughput is enhanced

using pipelining techniques. The generator computes point

multiplication on average in 16.95 μs and achieves a maximum

of 160,920 operations per second. A 2-term multiple point

multiplication requires 35.12 μs with a maximum of 61,719

operations per second.

Keywords- Elliptic curve cryptography, Field programmable

gate array, Elliptic curve public key generatorr, very fast elliptic

curve cryptography public key generatory.

I. INTRODUCTION

Elliptic curve cryptography offers the same level of

security as traditional public key cryptography with

considerably shorter keys [2]. So, it has replaced traditional

public-key cryptosystems in environments where short keys

are important. Public-key cryptosystems require considerable

computation time, hence, the fact that elliptic curve

cryptography has been shown to be faster than traditional

public-key cryptosystems [2] is of great importance. Speed

can be further increased by using a special class of elliptic

curves referred to as Koblitz curves [3].

This paper discusses FPGA-based implementation of

elliptic curve cryptography which has attained considerable

interest in both cryptography and FPGA communities. The

interest comes from the fact that public-key cryptosystems

require a lot of computation which often yield a need for

hardware accelerator. FPGAs are feasible alternatives for

cryptographic implementations because of the combination

of fast performance and flexibility.

This paper is organized as follows: In section II

preliminaries are presented with sub-sections A,B,C and D.

Next the main algorithms of this paper window method and

multiple point multiplication are discussed. Finally, the

implementation followed by analysis, results and conclusion

will be discussed.

II. PRELIMINARIES

Elliptic curve defined over finite binary fields, denoted by

F2
m
, are commonly used in practical cryptosystems. These

curves are called binary curves. In this paper, binary curves

of the following form are considered:

E: y
2
 + xy = x

3
 + ax

2
 + b, (1)

where a,b€F2
m
 with b ≠ 0. The additive operation of the

group is referred to as point addition and it is defined as P3 =

P1 + P2 where Pi € F2
m
. Point multiplication, which is a basic

component of every elliptic curve cryptosystem, is defined

by using point additions as follows:

Q = kP = P + P + P … P, (2)

where Q,P€E(F2
m
) and k is an integer. P is called the base

point and Q is the result point. Point multiplication

decomposes into three levels of hierarchy from top to bottom

as follows: point multiplication, point operation and finite

field arithmetic. These hierarchy levels are discussed in the

following sections. Each of the levels of the hierarchy is

considered in sections A,B and C. Finally, Koblitz curves

are discussed in section D.

A. Point Multiplication

Point multiplication is calculated using point doubling

and point addition. Point doubling is a special case of point

addition in which P3 = P1 + P2, where P1 = P2 and point

addition is calculated as P3 = P1 + P2 where P1 ≠ P2. Both

point additions and point doublings are used in computing

Eq. (2) when the integer k is represented with binary

expansion as

 K = (3)

where ki €{0,1}. Point doubling is done for all values of ki

whereas, point addition is not needed if ki = 0. So, it is

crucial to reduce the number of nonzeros. A simple option is

to use a signed-bit representation, i.e., ki€{0, ±1}, called

non-adjacent form (NAF). NAF has the property that

adjacent bits are never both nonzero. Every k has a unique

International Journal of Advances in Computer Networks and Security

24

NAF and it has the minimum number of nonzeros among all

signed-bit representations [6].

B. Point Operations

Point doubling, point addition, and point subtraction all

require an inversion in F2
m
. Inversions are very expensive

and it can be avoided by using projective coordinates where

a point is represented with three coordinates as (X, Y, Z).

We consider López-Dahab coordinates (LD) [12], where a

point (X, Y, Z) represents the point (X/Z, Y/Z
2
) in affine

(A). The LD coordinates allow an efficient mixed

coordinate point - subtraction. If P1 = (X1, Y1, Z1) is in LD

and P2 = (x2, y2) is in A, point addition P3 = (X3, Y3, Z3) =

(X1, Y1, Z1) + (x2, y2) is given as follows [9].

 A = Y1 + y2Z1
2
; B = X1 + x2Z1;

 C = BZ1; Z3= C
2
; (4)

 D = x2Z3; X3 = A
2
 + C(A + B

2
+ aC);

 Y3 = (D + X3)(AC + Z3)+ (y2 + x2)Z3
2

C. Finite Field Arithmetic

We chose polynomial basis as polynomial multiplication

is fast. Adding and squaring require only one clock cycle.

For computing inversions, we used Fermat’s Little Theorem

as proposed by Itoh and Tsujii in [7].

D. Koblitz Curves

In 1985, Koblitz [1] and Miller [10] independently

proposed the use of the additive finite abelian group of

points on elliptic curves defined over a finite field for

cryptographic applications. The Koblitz curves [1], or

anomalous binary curves, are

 Ek: y
2
 + xy = x

3
 + ax

2
 + 1, (5)

where a€{0,1}. The main advantage of Koblitz curves is

that the Frobenius endomorphism of F2
m
 acts on points via

τ(x, y) = (x
2
, y

2
) and is essentially free to compute. Because

τ satisfies (τ
2
 + 2)P = μτ(P) for all points P € E(F2

m
) where μ

= (−1)
1−a

, we can consider τ as a complex number satisfying

τ
2
 − μτ + 2 = 0, i.e., τ = (μ+√−7)/2. Thus, computing kP,

where k€Z and P€Ek (F2
m
), can be done using a

representation of k involving powers of τ instead of the

usual binary representation using powers of 2, yielding a

point multiplication algorithm similar to the binary “double-

and-add” method in which the point doublings are replaced

by applications of the Frobenius [12]. Solinas [12] shows

how the non-adjacent form (NAF) and window-NAF

methods can be extended to τ-adic expansions.

III. WINDOW METHODS

If enough storage space is available, point multiplication

can be sped up with window methods which involve pre-

computations with P and process w bits of k at a time. The

easiest way to width-w τNAF is by replacing certain strings

of 0, 1, and -1 with window values. The resulting

representation has an average weight of H(k) = l/(w + 1).

The pre-computed points, P3, P5, P7 and P9 are given in

Table 1.

An algorithm for width-w window point multiplication in

Koblitz curves is given in Alg. 1.

Algorithm 1. Window algorithm

Input: Integer k, point P

Output: Result point Q = kP

kl−1, kl−2 . . . k1k0 ← w-τNAF(k)

P1, P3, . . . , P2
(w-1)

 – 1 ← Pre-compute(P)

Q ← O

for i = l − 1 down to 0 do

Q ← Φ(Q)

if ki ≠ 0 then

Q ← Q + sign(ki)P|ki|

end if

end for

Q ← xy(Q)

IV. MULTIPLE POINT MULTIPLICATION

Sum of n elliptic curve point multiplications is called

multiple point multiplication and it is defined by

 (6)

where kiPi are point multiplications as defined by (2). All n

point multiplications can be computed simultaneously with

the so-called Shamir’s trick [6]. Consider the case n = 2. The

integers are represented as a table with k(1) and k(2) as rows.

First, P1 + P2 is pre-computed. Analogously with the

double-and-add algorithm, point multiplication proceeds

column by column so that P1 is added if the column is 10,

the point P2 if 01, and the pre-computed point if 11.

Generalization of Shamir’s trick for n point

multiplications is straightforward but requires more pre-

computations. Because zero columns do not require point

additions, it is possible to reduce computational cost by

representing k(i) with signed-binary representations and

choosing the representations which maximize the number of

zero columns. A representation maximizing the number of

zero columns is called τ -adic joint sparse form (τJSF). An

algorithm for computing τJSF for n = 2 was presented in

[10].

An algorithm for n-term multiple point multiplication on

Koblitz curves is given in Alg. 2.

Algorithm 2. Multiple point multiplication
Input: n integers k(1), . . . , k(n), n points P(1), . . . , P (n)

Output: Result point

kl−1kl−2 . . .k1k0_ ← τJSF(k(1), . . . , k(n))

P1, P2, . . . ,P(3
n
-1)/2 ← Pre-compute(P(1), . . . , P (n))

Q ← O

for i = l − 1 down to 0 do

 Q ← Φ(Q)

International Journal of Advances in Computer Networks and Security

25

 if ki ≠ 0 then

 Q ← Q + sign(ki)P|ki|

end if

 end for

Q ← xy(Q)

V. IMPLEMEMNTATION

 The aim of the fast generator is to provide high

throughput. The motivation for designing the generator is to

use it for PLA. So, it must support both 1-term and 2-term

(multiple) point multiplications which are used in signing

and verifying packets.

Algs. 1 and 2 share a common structure, i.e. both require

conversion for integer(s), pre-computation, have the same

for-loop, and convert the point Q back to A in the end. This

paper utilizes this common structure in implementing the

algorithms and use operation-specific processing units in

order to increase efficiency.

The accelerator operates as follows. First, integer(s) k(i)

and point(s) P(i) are sent to the τNAF/JSF converter and pre-

processor, respectively. The converter converts integer(s) to

either width-4 τNAF or τJSF and saves the result into a

buffer. Simultaneously, the pre-processor performs pre-

computations and stores points into the registers. When both

converter and pre-processor are ready, the main processor

executes the for-loop of Algs. 1 and 2. The control logic

selects one of the pre-computed points according to the

current ki and the main processor adds or subtracts it to or

from a temporary value Q = (X, Y, Z) and performs the

following Frobenius endomorphisms. When the for-loop has

been executed, the control logic enables the postprocessor

which computes back the affine representation of the point

Q.

A. τNAF/JSF Converter

The τNAF/JSF converter supports computation of two

representations: width-4 τNAF and 2-term τJSF. The

converter first converts all integers into τNAF

simultaneously with two τNAF converters which are

implemented as presented in [7]. Parallel processing was

used in order to minimize total computation time.

A. Preprocessor

The pre-processor is based on the architecture presented

in [5], but it uses polynomial basis instead of normal basis.

Fig.1 depicts the architecture of the pre-processor. The

storage RAM is used for storing temporary variables during

pre-computations and it is implemented with embedded

memory. The pre-processor is controlled by a finite state

machine.

Points that are pre-computed in the pre-processor are

listed in Tables 1 and 2. They are represented in affine

coordinate so that (4) can be used in the for-loop. Pre-

computations utilize unified point addition and subtraction

formulae which compute both P1+ P2 and P1− P2 with only

 Figure 1. Pre-processor

TABLE 1. Pre-computed points for single point multiplication.

Pre-computed points for ω = 4 bits

ω Point Operation Arithmetic

0001 P1 P (x, y)

010 î P3 Φ2(P) – (P) (x4,y4) + (x, y + x)

0 101 P5 Φ2(P) + (P) (x4,y4) + (x, y)

1 00 î P7 Φ3(P) – (P) (x8,y8) + (x, y + x)

1001 P9 Φ3(P) +(P) (x8,y8) + (x, y)

TABLE 2. Pre-computed points for multiple point multiplication.

K2k1 point K2k1 point

00 R0 = 0

01 R1 = P1 0î -R1

10 R2 = P2 î0 -R2

1î R3 = R2 + R1 î1 -R3

11 R4 = R2 - R1 îî -R4

one inversion [6]. The number of inversions is further

reduced using the so-called Montgomery’s trick which

trades inversions to multiplications [6]. If n = 2, only two

points need to be pre-computed.

B. Main Processor

The main processor implements the for-loop of Algs. 1

and 2. This for-loop dominates the computational

requirements and, hence, its efficient computation is

necessary. The sequential nature of the loop forbids

computing point operations in parallel. Parallelism can be

used in Frobenius endomorphisms (squaring for all

coordinates computed in parallel) and point additions.

However, data dependencies usually prevent efficient use of

parallelism in point additions and cause poor latency-area

products. Details of the method are available in [8]. The

method computes consecutive point additions and Frobenius

endomorphisms efficiently with parallel field multipliers by

interleaving successive operations. The key observation is

that the computation of Z3 in (4) does not require Y1. Hence,

the Z coordinate of the next point addition can be computed

simultaneously with the Y coordinate of the previous point

addition. The method redefines (4) so that the computation is

performed with eight sub-computations each including one

multiplication. We use four multipliers so that one of them is

International Journal of Advances in Computer Networks and Security

26

devoted for the Z coordinate computations, (7)–(8), one for

the X coordinate computations, (9)–(10), and two for the Y

coordinate computations, (11)–(14).

 z0 : E = x2Z1 (7)

 z1 : (8)

x0 : G = y2Z1
2

(9)

x1 : X3 = C + (F + G + Y1) + (G + Y1)
2

(10)

 y0 : H = C(G + Y1) + Z3 (11)

 y1 : D = x2Z3 (12)

 y2 : J = Z3
2
(x2+ y2) (13)

y3 : Y3 = H(D + X3) + J (14)

The computation schedule, given in Fig. 2, clearly shows

that the effective critical path is 2 multiplications per point

addition. Because each multiplier is used for only two sub-

computations, specialized processing units optimized for

these sub-computations were designed. The processing units

consist of a multiplier and several adders and squarers as

shown in Fig. 3. The processing units compute the sub-

computations so that their latency is the latency of

multiplication plus one clock cycle.

When a result coordinate is ready (after z1, x1, and y2/3),

a squarer is used for computing Frobenius endomorphisms

for that coordinate. Each Frobenius endomorphism requires

one clock cycle. This architecture is presented in more detail

in [8].

Figure 2. Computation schedule of the main processor. Operations

connected with a line belong to the same point addition.

(a)

(b)

(c)

Figure. 3. Processing units for (a) z0 and z1, (b) x0 and x1, and (c) y0, y1, y2,

and y3.

B. Postprocessor

The postprocessor maps the output of the main processor

from LD to A, i.e. it computes the last line of Algs. 1 and 2.

The computation requires one inversion, one squaring, and

two multiplications, of which the inversion is the most

complex operation by far. Inversions can be computed with

the Fermat’s Little Theorem as suggested by Itoh and Tsujii

[7] because it uses successive squaring and multiplications

which allows reusing the same hardware for inversion and

other operations required. The architecture of the

postprocessor was presented in [8] and it is depicted in Fig.

4.

VI. ANALYSIS AND OPTIMIZATIONS

The latencies of operations needed in Algs. 1 and 2 are

listed in Table 3. The latencies of pre-processor, main-

processor, and postprocessor depend on the latency of

multiplication in F2
m
 denoted by M.

 Digit-serial multipliers are used and their latencies are

given by

 (15)

where m is the field size (m = 163) and D is the digit size.

The digit size, D, defines both the latency and the size of a

multiplier. Different D can be used for multipliers in

different parts of the generator with the exception that all

multipliers of the main processor must have the same D.

If fast multipliers (large D) are used, the constant latency of

the τNAF/JSF converter becomes a bottleneck. In order to

avoid this, we optimized the generator for 1-term point

multiplication by choosing D so that τNAF/JSF conversions

are computed slightly faster than the other operations of

window point multiplications. Hence, we selected D = 4 for

Figure 4. Postprocessor

International Journal of Advances in Computer Networks and Security

27

the pre-processor, D = 13 for the main processor, and D = 3

for the postprocessor. The postprocessor was selected to be

faster than the τNAF/JSF converter in order to ensure that

inversions do not become the bottleneck.

VII. RESULTS AND COMPARISONS

The architecture was described in VHDL and synthesized

for Xilinx vertex-5 FPG with ISE 9.1 design software. Table

3 presents the area consumption of the generator and its

components as given by the design software. The main

processor expectedly dominates in the area consumption.

 Computation times are presented in Table 4. The

computation time is the time in which the generaor

computes a single operation with an average H(k) when the

pipeline is empty, i.e. when no wait delays occur. In all

cases throughput is bounded by the main processor.

Our generator is clearly faster than most published

implementations, although comparisons are difficult

between different FPGAs.

The superiority of Koblitz curves over general curves is

evident. The fastest general curve implementation using the

same field size (m = 163) was recently presented in [6] and

it achieves computation time 19.55μs and throughput 51,120

TABLE 3. Area Consumption

Component LUTs FFs RAMs

Converter 5,238 3,543 7

Pre-processor 2,934 1,543 14

Main processor 15,073 10,978 0

Postprocessor 2,857 2,984 0

TABLE 4. Latencies

Operations Latency(clock cycles)

Conversion, w-Tnaf 500

Conversion, tJSF 500

Pre-computation, w=4 18M + 300

Pre-computation, n=2 13M + 414

Pre-processor 16M + 656

Main processor 2H(k)(M + 1) + l + 6

Postprocessor 11M + 175

ops in a Virtex-4 FPGA. These values are inferior to our

accelerator.

VIII. CONCLUSIONS

We described an FPGA-based very fast elliptic curve

cryptography public key generator on NIST K-163 Koblitz

curve. The generator utilizes window methods and multiple

point multiplications. It uses dedicated processing units for

different parts of the algorithms and supports pipelined

computation.

References

[1] N. Koblitz, Elliptic curve cryptosystems, Math. Comput 48 (1987)

203–209.

[2] J. Goodman and A. Chandrakasan. An energy-efficient reconfigurable
public-key cryptography processor. IEEE J. Solid-State Circuits,
36(11):1808–1820, Nov. 2001.

[3] N.Koblitz. CM-curves with good cryptographic properties. In
Advances in Cryptology, CRYPTO ’91, volume 576 of lecture notes
in Computer Sci., pages 279-287. Springer 1991.

[4] C. Candolin, J. Lundberg, and H. Kari. Packet level Authentication in
military networks. In Proc. 6th Australian Information Warfare & IT
Security Conf., Geelong, Australia, Nov. 2005.

[5] K. J¨arvinen and J. Skytt¨a. On parallelization of high-speed

processors for elliptic curve cryptography. IEEE Trans. VLSI. pp.
109 -118. Springer 2008.

[6] K. J¨arvinen, J. Forsten, and J. Skytt¨a. FPGA design of selfcertified
signature verification on Koblitz curves. In Cryptographic Hardware
and Embedded Systems CHES 2007, volum4727 of Lecture Notes in
Computer Sci. pages 256-271. Springer 2007.

[7] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases. Inform.Comput.,78(3):171–
177,Sept.1988.

[8] K. J¨arvinen and J. Skytt¨a. Fast point multiplication on Koblitz
curves: Parallelization method and implementations. Microproc.

Microsyst, Vol. 33. pp. 106-116. Springer 2009.

[9] E. Al-Daoud, R. Mahmod, M. Rushdan, A. Kilicman, A new addition
formula for elliptic curves over GF(2n), IEEE Trans. Comput. 51 (8)

(2002) 972–975.

[10] V. Miller, Use of elliptic curves in cryptography, in: Advances in
Cryptology, CRYPTO’85, Lecture Notes in Computer Sci., pp. 417-

426. Springer1986. .

[11] J. A. Solinas. Efficient arithmetic on Koblitz curves. Des. Codes
Cryptography, 19(2–3):195–249, 2000.

[12] J. López, R. Dahab, Improved algorithms for elliptic curve arithmetic

in GF(2n), in: Selected Areas in Cryptography, SAC’98, Lecture
Notes in Computer Science, vol. 1556, Springer, 1998, pp. 201-227.

