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Abstract—In this paper, an improved hybrid approach is 

developed to find global minima of the problem. The proposed 

approach consists of population based approaches PSO and 

DE. In the proposed approach, the global best obtained from 

PSO is modified with the help of DE. When global best of PSO 

remains same for large number of iterations. Then a mutant 

vector corresponding to random particles is generated and 

diversity is increased so that better results can be obtained. In 

this paper, difference of more than two vectors is taken to 

increase more randomness. The proposed approach is tested on 

standard functions also and results are compared with PSO.  

 

 
Index Terms—DE, PSO, Global Best 

 

 

I.  INTRODUCTION 

 

 

ARTICLE Swarm Optimizations is population based 

approach. It was initially developed as an alternate to 

Genetic Algorithm (GA). GA is successful in giving optimal 

solution to problem but the convergence of the algorithm 

takes lot of time. The convergence is actually dependent on 

the fact that how finely the parameters are tuned. There is 

diversity in the population but parameters selection is really 

a rigorous work.  There are some operators in GA which are 

applied in sequence to improve the solution of the problem. 

Because of longer convergence time, PSO came into 

existence. PSO is considered a solution to the problem. In 

few years PSO became very popular and has wide 

applications in various fields like biomedical, power 

systems, data clustering etc. It has advantage of simplicity 

and less number of parameters tuning. Otherwise also tuning 

of parameters is not that much required as in GA. It searches 

automatically for the optimum solution in the search space, 

and the involved search process is random. 

 

In PSO like other evolutionary algorithms a population of 

individuals (particles) is generatedrandomly within the given 

search space of the variables. The initial random population 

(swarm) is random solution of the problem. To  
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check the quality of solution, for each generated solution 

fitness is calculated and compared with other individuals. 

The fittest population is kept and different operators are 

generally applied in evolutionary algorithms to modify the 

obtained solution. While PSO does not have operators like 

crossover and mutation in GA. But individuals (particles) 

update themselves with the internal velocity. They also have 

memory, which is important to the algorithm.PSO has ability 

of maintaining balance between local minima and global 

minima which helps to find solution of the problem in 

particular direction. With passing time it has been observed 

now that PSO sometimes goes into local minima and 

converges very quickly in few iterations and stop searching 

better solutions. This problem of local minima occurs 

because of the lesser diversity in the population and during 

updation of velocity and position vector, some solutions fly 

from the search space. This problem of local tapping can be 

overcome if there is diversity in population. The biggest 

advantage of PSO is its ability to give direction of search in 

which solution lies. Due to this, in this paper, the diversity in 

population is introduced if swarm best obtained is not 

changing for a large number of iterations. To increase 

diversity, differential evolution is combined with the PSO.  

In this paper, after given number of iterations if global 

best is not changing then the trial vectors are generatedand 

considered as part of the population which increases 

diversity in the particles and gives optimal solution.  

The present paper is organized into four sections. Section 

I introduces particle swarm optimization; SectionII is about 

the algorithm of PSO and DE while Section III and IV deals 

with results and discussions and conclusions respectively. 

 

II.  BASIC ALGORITHM OF PSO AND DE 

PSO and DE are population based approaches. Like all 

population based approaches in these techniques, a 

population is generated and modified in each iteration to get 

better solution. The detailed algorithms of these are as given 

below: 

 

A.  Particle Swarm Optimization  

In PSO, initially particles (individuals) of the swarm 

(population) are randomly generated refining their 

knowledge of the given search space. Each particle p in a 

PSO thus have a position ( k

pPos ) and velocity ( 1k

pVel )at k
th

 

iteration which directs the flying of the particles. All of 
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particles have fitness values which are evaluated by the 

fitness function to be optimized, and one can find the 

optimal solution of the problem through the generation. In 

each generation, each particle in PSO traces a trajectory in 

the search space; constantly updating a velocity vector by 

way of two kinds of search memories. One is the particle’s 

best memory, called pbest, and the other is the swarm’s best 

memory, called gbest. After generations, the PSO can find 

the best solution according to the best solution memories 

based on the best solutions found so far by that particle as 

well as others in the population (swarm). The equations 

involved in PSO are as given below [1-2]: 
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where c1 and c2 are random number between 0 and 1; w 

provides balance between global and local explorations. w 

often decreasesfrom 0.9 to 0.4 during the iterations. It is 

generally set using the following equation: 

max max min max(( ) / )*w w w w k k     (3) 

 

The above procedure is repeated till the search satisfies the 

termination condition.  

B.  Differential Evolution (DE)  

Differential evolution algorithm is population based 

approach in which at iteration G=1, a population is 

generatedwithin the search space of variables. The fitness 

function is calculated for the generated population.In the 

next operation G=G+1, a mutant vector is produced by 

selecting random particles from the population at G=1as 

given below: 

 

4, 1, 2,

3,

tan (

)

  



G G G

G

Mu t vector Particle F Particle Particle

Particle
 (4)  (9) 

 

whereFis constant having value between 0 and 1; Particle1, 

G, Particle2,G,Particle3,G and Particle4,G are four randomly 

selected particles from population at G
th

 particle.  

 

In DE, trial vectors are generated by applying crossover 

between earlier generated population at G
th

 iteration and 

mutant vector. The trial vector is obtained by comparing the 

random number generated between 0 and 1 and crossover 

probability selecting a crossover probability (Pcross). If 

random number is greater than thePcross then design variable 

of trail vector will be from mutant vector otherwise from G
th

 

iteration generation. 

 In next step, fitness function is calculated for trial vectors, if 

fitness of trial vector is less than earlier fitness of Pbest. 

Then in population trial vectors will take the place of earlier 

population. The above procedure repeated till the search 

satisfies the termination condition. The termination 

condition may be maximum number of iterations or the 

convergence criteria set. 

 

III.  ALGORITHM OF THE PROPOSED APPROACH 

The algorithm of the proposed approach is as given below: 

 

1. A swarm of particle at initial iteration within the 

given search space of the variables. Each particle p 

has position k

pPos  and velocity k

pvel  at k
th

 iteration 

which directs the flying of the particles. 

2. Evaluate fitness function for the generated swarm. 

3. Store Pbest and Gbest for each particle and swarm at 

each iteration. 

4. Update position and velocity vector as given in 

equation (1) and (2) respectively. 

5. IfGbest at k+1 iteration is better than Gbest at k. 

Then replace it with new ones. 

6. If Gbest is not changing for given number of 

iterations. 

7. Generate a mutant vector as given in equation (4). 

8. Generate trial vectors by combining Pbest and 

mutant vector by selecting Pcross.   

9. Calculate fitness function for the generated trial 

vector. 

10. If fitness of trial vector is better than Pbest of PSO. 

Replace the earlier particle with trial vector. 

11. Calculate Pbest and Gbest for the updated swarm as 

given in PSO. 

 

The above steps are repeated till maximum number of 

iterations is achieved. 

 

IV.  RESULTS AND DISCUSSIONS  

In this paper, the proposed approach is tested on standard 

functions, Ackley, Rosenberg, and Rastrigin. The results are 

also compared with PSO method also. The final values 

obtained using proposed approach and PSO are tabulated in 

Table I. The range of variables for various functions along 

with the dimensions of variables are tabulated in 2
nd

 and 3
rd

 

column of the Table I. The results obtained for PSO and 

proposed approach are tabulated in 5
th

 column of the Table I.  

 

The results for Rastrigin, Ackely and Rosenbrock functions 

are shown in Fig 1, 2 and 3 respectively. In all the figures 

the Gbest v/s iterations are shown. At the top of fig name of 

function along with the dimensions of variables are 

displayed and finally best Gbest is also visible in the figures 

of various functions. 

On comparing the results of PSO and proposed approach, it 

is clear from 5
th

 column of Table I that the results obtained 

using proposed approach are fairly better than PSO.  

Hence it can be concluded that the proposed approach 

introduces sufficient of randomness and gives optimal 

solution in less number of iterations. 
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TABLE I 

COMPARISON OF PSO AND PROPOSED APPROACH FOR DIFFERENT 

FUNCTIONS 

 

Method Function Range of  

variables 

D Value of 

Objective 
Function 

PSO Ackley [-100 100] 30 19.867 

Proposed  [-100 100]  -8.817* 10-16 

PSO Rosenberg [-100 100] 10 3.415 

Proposed  [-100 100]  0.000269 

PSO Rastrigin [-100 100]  39.79 

Proposed    0 
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Fig 1 (a) Gbest v/s. Iterations Using PSO for Rastrigin Function 
 

-10 -5 0

x 10
-9

-3

-2

-1

0
Particle Dynamics

Dimension 1

D
im

e
n
s
io

n
 3

0

0 500 1000 1500 2000
10

1

10
2

10
3

10
4

10
5

epoch

g
b
e
s
t 

v
a
l.

    39.7983 = Rastrigin( [ 30 inputs ] )

PSO Model: Common PSO

Dimensions : 30

# of particles : 24

Minimize to : Unconstrained

Function : Rastrigin

Inertia Weight : 0.4

  

Green = Personal Bests
Blue  = Current Positions
Red   = Global Best

 
 

Fig 1 (b) Gbest v/s. Iterations Using Proposed Approach for Rastrigin 

Function 

 

 
 

-5 0 5

x 10
-16

-1

0

1

2

3

x 10
-16

Dimension 1

D
im

e
n
s
io

n
 3

0

Particle Dynamics

0 200 400 600 800 1000 1200 1400
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

epoch

g
b
e
s
t 

v
a
l.

-8.88178e-016 = ackley( [ 30 inputs ] )

PSO Model: Common PSO

Dimensions : 30

# of particles : 24

Minimize to : Unconstrained

Function : ackley

Inertia Weight : 0.4

  

Green = Personal Bests
Blue  = Current Positions
Red   = Global Best

 
 

Fig2 (a) Gbest v/s. Iterations Using PSO for Ackley Function 
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Fig 2 (b) Gbest v/s. Iterations Using PSO for Ackley Function 
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Fig 3 (a) Gbest v/s. Iterations Using PSO for Rosenbrock  Function  
 

 

 

 

 

 

 

 

Vol:1 Issue:1 ISSN 2278 - 215X



International journal of Advances in Electronics Engineering 

383 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Particle Dynamics

Dimension 1

D
im

e
n
s
io

n
 1

0

0 200 400 600 800 1000 1200
10

-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

epoch

g
b
e
s
t 

v
a
l.

0.000296653 = Rosenbrock( [ 10 inputs ] )

PSO Model: Common PSO

Dimensions : 10

# of particles : 24

Minimize to : Unconstrained

Function : Rosenbrock

Inertia Weight : 0.50807

  

Green = Personal Bests
Blue  = Current Positions
Red   = Global Best

 
 
Fig 3 (b) Gbest v/s. Iterations Using Proposed Approach for Rosenbrock  

Function  

 

 

V.  CONCLUSIONS 

 

In this paper, a hybrid approach to find global minima in 

PSO is developed. In this approach, the global best obtained 

in PSO is modified by creating randomness in search space 

with the help of DE. A mutant vector considering random 

particles is generated which provides an improved direction 

for the solution. The proposed approach is easy to 

implement and gives optimal solution of the problem.  
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