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Abstract – In image compression the key challenge is to efficiently 

encode and represent high frequency image structural 

components such as patterns, edges and textures. In this work, 
we develop an efficient image compression scheme 
based on super-spatial prediction of structural units. 
This so-called super-spatial prediction is motivated by 

motion prediction in video coding, attempting to find an 
optimal prediction of structure components within 
previously encoded image regions. 
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I. INTRODUCTION 

The key in efficient image compression is to explore 

source correlation so as to find a compact representation of 

image data. Existing lossless image compression [1], [2] 

schemes attempt to predict image data using their spatial 

neighborhood [1]. A natural image often contains a large 

number of structure components, such as edges, contours, and 

textures. These structure components may repeat themselves 

at various locations and scales. Therefore, there is a need to 

develop a more efficient image prediction scheme to exploit 

this type of image correlation. 

The idea of improving image prediction and coding 

efficiency by relaxing the neighborhood constraint can be 

traced back to sequential data compression [4] and vector 

quantization for image compression. In sequential data 

compression, a substring of text is represented by a 

displacement/length reference to a substring previously seen 

in the text. Storer extended the sequential data compression to 

lossless image compression. However, the algorithm is not 

competitive with the state-of-the-art such as context-based 

adaptive lossless image coding (CALIC)[1] in terms of coding 

efficiency. During vector quantization (VQ) for lossless image 

compression, the input image is processed as vectors of image 

pixels. The encoder takes in a vector and finds the best match 

from its stored codebook. The address of the best match, the 

residual between the original vector and its best match are 

then transmitted to the decoder. The decoder uses the address 

to access an identical codebook, and obtains the reconstructed 

vector. Recently, researchers have extended the VQ method to 

visual pattern image coding (VPIC) and visual pattern vector 

quantization (VPVQ). The encoding performance of VQ-

based methods largely depends on the codebook design. These 

methods still suffer from lower coding efficiency, when 

compared with the state-of-the-art image coding schemes. 

In the intra prediction scheme proposed by Nokia, there 

are ten possible prediction methods: DC prediction, 

directional extrapolations, and block matching. DC and 

directional prediction methods are very similar with those of 

H.264 intra prediction [3]. The block matching tries to find the 

best match of the current block by searching within a certain 

range of its neighboring blocks. This neighborhood constraint 

will limit the image compression efficiency since image 

structure components may repeat themselves at various 

locations. 

In fractal image compression [4], the self-similarity 

between different parts of an image is used for image 

compression based on contractive mapping fixed point 

theorem. However, the fractal image compression focuses on 

contractive transform design, which makes it usually not 

suitable for lossless image compression. Moreover, it is 

extremely computationally expensive due to the search of 

optimum transformations. Even with high complexity, most 

fractal-based schemes are not competitive with the current 

state of the art [1].  

       An efficient image compression scheme based on super-

spatial prediction of structure units is presented here. A 

natural image can be often separated into two types of image 

regions: structure and non-structure regions. Nonstructure 

regions, such as smooth image areas, can be efficiently 

represented with conventional spatial transforms, such as KLT 

(Karhunen Lòeve transform), DCT (discrete cosine transform) 

and DWT (discrete wavelet transform). However, structure 

regions, which consist of high frequency structural 

components and curvilinear features in images, such as edges, 

contours, and texture regions, cannot be efficiently 

represented by these linear spatial transforms. They are often 

hard to compress and consume a majority of the total 

encoding bit rate. 

Super-spatial structure prediction breaks the neighborhood 

constraint, attempting to find an optimal prediction of 

structure components [5], [6] within the previously encoded 

image regions. It borrows the idea of motion prediction from 
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video coding, which predicts a block in the current frame 

using its previous encoded frames. In order to “enjoy the best 

of both worlds”, a classification scheme is used to partition an 

image into two types of regions: structure regions (SRs) and 

nonstructure regions (NSRs). Structure regions are encoded 

with super-spatial prediction while NSRs can be efficiently 

encoded with conventional image compression methods, such 

as CALIC. It is also important to point out that no codebook is 

required in this compression scheme, since the best matches of 

structure components are simply searched within encoded 

image regions. 

 

II. SUPER-SPATIAL STRUCTURE PREDICTION 

A real world scene often consists of various physical 

objects, such as buildings, trees, grassland, etc. Each physical 

object is constructed from a large number of structure 

components based upon some predetermined object 

characteristics. These structure components may repeat 

themselves at various locations and scales Fig. 1. Therefore, it 

is important to exploit this type of data similarity and 

redundancy for efficient image coding. 

The Super spatial prediction borrows its idea from motion 

prediction [3] Fig.2. In motion prediction Fig. 2(b), we search 

an area in the reference frame to find the best match of the 

current block, based on some distortion metric. The chosen 

reference block becomes the predictor of the current block. 

The prediction residual and the motion vector are then 

encoded and sent to the decoder. In super-spatial prediction 

Fig.2(a), we search within the previously encoded image 

region to find the prediction of an image block. The reference 

block that results in the minimum block difference is selected 

as the optimal prediction. For simplicity, we use the sum of 

absolute difference (SAD) to measure the block difference. 

 

 
(a) Barbara image. (b) Four image blocks extracted from Barbara 

Fig. 1 Example for Super Spatial Redundancies 

 

 

 
Fig.2. (a) Super-spatial prediction. (b) Motion prediction in video coding. 

 

As in video coding [3], we need to encode the 

position information of the best matching reference block. To 

this end, we simply encode the horizontal and vertical offsets, 

between the coordinates of the current block and the reference 

block using context-adaptive arithmetic encoder. The size of 

the prediction unit is an important parameter in the super-

spatial prediction. When the unit size is small, the amount of 

prediction and coding overhead will become very large. 

However, if we use a larger prediction unit, the overall 

prediction efficiency will decrease. In this work, we attempt to 

find a good tradeoff between these two and propose to 

perform spatial image prediction on block basis. 

 

A. Image Block Classification  

A block-based image classification scheme is used here. 

The image is partitioned into blocks of 8x8. We then classify 

these blocks into two categories: structure and nonstructure 

blocks. Structure blocks are encoded with super-spatial 

prediction. Nonstructure blocks are encoded with 

conventional lossless image compression methods, such as 

CALIC. 

 

B. Estimation of Threshold 

The threshold is required while comparing the current 

block with the previous encoded region. This threshold value 

should be so decided that it will give best compression 

performance. 

 

C. CALIC 

The Context Adaptive Lossless Image Codec (CALIC) 

scheme, uses both context and prediction of the pixel values. 

CALIC employs a two-step (prediction/residual) approach. In 

the prediction step, CALIC [1] employs a simple new gradient 

based non-linear prediction scheme called GAP (gradient-

adjusted predictor) which adjusts prediction coefficients based 

on estimates of local gradients. Predictions then made context-

sensitive and adaptive by modeling of prediction errors and 

feedback of the expected error conditioned on properly chosen 

modeling contexts. The modeling context is a combination of 

quantized local gradient and texture pattern, two features that 

are indicative of the error behavior. The net effect is a non-

linear, context-based, adaptive prediction scheme that can 

correct itself by learning from its own past mistakes under 

different contexts. 

       CALIC encodes and decodes images in raster scan order 

with a single pass through the image. The coding process uses 

prediction templates that involve only the previous two scan 

lines of coded pixels. Consequently, the encoding and 

decoding algorithms require a simple double buffer that holds 

two rows of pixels that immediately precede the current pixel, 

hence facilitating sequential build-up of the image. 

In the continuous-tone mode of CALIC, the system has four 

major integrated 

components: - 

 Prediction 

 Context selection and quantization 

 Context modeling of prediction errors 
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 Entropy coding of prediction errors. 

CALIC is a spatial prediction based scheme, in which GAP is 

used for adaptive image prediction [1]. 

Here GAP prediction is performed on the original image and 

the prediction error for each block is computed. If the 

prediction error is larger than a given threshold, then it is 

considered as a structure block. Otherwise, it is classified as a 

nonstructure block. 

 

III.  RESIDUE ENCODING 

The implemented image compression scheme is purely 

lossless, the residues need to be transmitted along with the 

image. But this will increase the payload size and thus the 

compression will not be achieved successfully. The residues 

are encountered in two places: - The CALIC Algorithm and 

the SAD residues. Arithmetic coding [7], [8] schemes are to 

be used to transmit the residues to further reduce the size of 

the overhead data per block. 

Arithmetic coding is especially useful when dealing with 

sources with small alphabets, such as binary sources, and 

alphabets with highly skewed probabilities. It is also a very 

useful approach when, for various reasons, the modeling and 

coding aspects of lossless compression are to be kept separate. 

In arithmetic coding a unique identifier or tag is generated for 

the sequence to be encoded. This tag corresponds to a binary 

fraction, which becomes the binary code for the sequence.  

In order to distinguish a sequence of symbols from another 

sequence of it has to be tagged with a unique identifier. One 

possible set of tags for representing sequences of symbols are 

the numbers in the unit interval (0, 1). Because the number of 

numbers in the unit interval is infinite, it should be possible to 

assign a unique tag to each distinct sequence of symbols. In 

order to do this we need a function that will map sequences of 

symbols into the unit interval. A function that maps random 

variables, and sequences of random variables, into the unit 

interval is the cumulative distribution function (cdf) of the 

random variable associated with the source. This is the 

function to be used in developing the arithmetic code. 

 

IV. THE COMPLETE ALGORITHM 

The complete algorithm used for this lossless image 

compression scheme can be categorized into two main parts as 

listed below. 

A. Proposed Encoder  

The original image is subjected to Super-spatial Structure 

Prediction Algorithm. This produces a Lossy Compressed 

Image and a set of residues. The residues are then encoded 

using Arithmetic Coding. The Lossy Compressed Image 

along with the encoded residues forms the compressed data 

as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Proposed Encoder 

 

B. Proposed Decoder 

The compressed data consisting of Lossy Compressed 

Image and encoded residues is then given as inputs to the 

decoder. The encoded residues are given to the Arithmetic 

Decoder to obtain the original set of residues which is then 

added to the Lossy Compressed Image to reconstruct the 

Final Image as shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Proposed Decoder 

 

V. SIMULATION RESULTS 

All the simulations were done using MATLAB 7.11 

(R2010b) on standard Images like Cameraman (Fig.5.2) 

that have the size of 256x256 pixels and Baboon (Fig. 5.3), 

Crowd (Fig. 5.4) and Lena (Fig. 5.1) having the size of 

512x512 pixels. 
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    (a) Original Image            (b) Lossless compressed image 

Fig. 5.1 Lena (512x512) 

 

         
(a) Original Image            (b) Lossless compressed image 

Fig. 5.2 Cameraman (256x256) 

 

            
(a) Original Image            (b) Lossless compressed image 

Fig. 5.3 Baboon (512x512) 
 

            
(a) Original Image            (b) Lossless compressed image 

Fig. 5.4 Crowd (512x512) 
 

The simulation results by varying threshold values for lena 

image are tabulated in Table I. The best result is obtained for 

threshold value of 1. Cumulative results for different images 

are tabulated in Table II. The compression performance 

comparison with CALIC and bit rate saving achieved is 

tabulated in Table III. 

 

TABLE I 
RESULTS FOR LENA IMAGE(512X512) 

Original 

Size (kB) 

Lossy 

Compressed 

Size(kB) 

Final 

Lossless 

Compressed 
Size 

(kB) 

 

Thresh-

old 

PSNR Compre-

ssion 

Ratio 

350 21.772 

 

152.0300 

 

0.5 ∞ 

 

2.3021:1 

 

350 21.090 150.1348 1 ∞ 

 

2.3312:1 

 

350 19.920 151.6600 2.5 ∞ 

 

2.3077:1 

 

350 17.830 162.1000 5 ∞ 

 

2.1592:1 

 

 

 
TABLE II 

BEST-CASE RESULTS OBTAINED EXPERIMENTALLY 

Image 

name 

Origi

nal 
Size 

(kB) 

Lossy 

Compresse
d Size(kB) 

Final 

Lossless 
Compressed 

Size 

(kB) 
 

Bit rate 

of 
Compre

ssed 

Image 
(bpp) 

Compre-

ssion 
Ratio 

Lena 350 21.090 150.1348 4.6917 2.3312:1 

 

Cameram
an 

85 9.2945 44.1245 5.515 1.9263:1 
 

Baboon 397 27.5391 204.4150 6.387 1.9421:1 

 

Crowd 436 47.8809 227.9100 7.122 1.9130:1 

 

 

 
TABLE III 

COMPRESSION PERFORMANCE COMPARISON WITH CALIC 

Image name CALIC Bit 

Rate (bpp) 

SSSP Bit Rate 

(bpp) 

Bit Rate Saving 

(bpp) 

 

Lena 4.8500 

 

4.6917 -0.1583 

 

 

Cameraman 6.3875 
 

5.515 -0.8725  

Baboon 6.6156 6.387 -0.2286 

 

 

Crowd 7.7500 7.122 -0.6280 
 

 

 

VI. CONCLUSION 

In this endeavor a simple yet efficient lossless image 

compression algorithm based on structure prediction has been 

successfully designed and tested. It is motivated by motion 

prediction in video coding, attempting to find an optimal 

prediction of a structure components within previously 

encoded image regions. Taking CALIC as the base code, the 

image was classified into various regions and they were 

encoded accordingly. The extensive experimental results 

demonstrate that the proposed scheme is very efficient in 

lossless image compression, especially for images with 

significant structure components. 
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