
International Journal of Advances in Electronics Engineering

334

REVIEW of AUTOMATED SOFTWARE TESTING

with MACRO SCHEDULER

Priyanka Mittal

ASET Department, AMITY University

Noida, UP, INDIA

pri_mittal@rediffmail.com

RajniSehgal

ASET Department, AMITY University

Noida, UP, INDIA

rsehgal@amity.edu

Abstract—Software testing is the most crucial and expensive

task of project development. Testing is done in each

development phase and can be done in hardware or

software. The testing phase took over the 50% of the project

resources. In this paper, we focus on automation testing

using macro scheduler. Automated testing streamlines the

QA process and saves precious resources, Time and money

and improves the effectiveness of software testing. Macro

Scheduler excels at testing software through its high level

functions to test a program. The time saved by running test

scripts over manual checklists is enormous and bugs can be

found more quickly.

Keywords— Software Testing,Test Case generation, Automated

Testing, MacroScheduler, Test Scripts.

I. INTRODUCTION

Software testing is one of the main task in project development

.It can be a time consuming task. Traditionally, the applications

are verified manually going through checklist to verify that the

requirements of the software was met correctly through QA

technicians and/or programmers. To save considerable time and

resources, the Automated Testing using Macro Scheduler is

used.Macro scheduler had provided many innovative new

features, such as screen image recognition technology, to ensure

our products can automate more software, more easily.Microsoft

Visual Basic Scripting Edition can be incorporates by macro

scheduler. Macro Scheduler macros can contain both Macro

Script and VBScript to provide infinite possibilities.

II. PROCESS OF MACRO SCHEDULER

A. What is macro scheduler?

Macro Scheduler is ideal for automated software testing and

costs a fraction of the price of most dedicated SQA tools. Macro

Scheduler has been used by organizations large and small for

enterprise-wide automated application testing. Macro

Scheduler's powerful, yet easy to use, language allows for event

driven user simulation to drive applications of any kind and

gather time critical data. By working at the user level Macro

Scheduler bridges that gap, allows automation of disparate

systems and gathers more realistic data as a result of user level

simulation rather than depending on internal hooks.

B. Procedure to create macro in excel

1. Right click on any sheet tab and choose View Code, to open

the Visual Basic Editor.

2. In the Project Explorer at the left of the screen, find the

workbook.

3. Look for a Modules folder, and open it. (If there is no
Modules folder, go to Step 6.)
4. for each module in the folder:

i) Right-click on the module name.

ii) Choose Remove Module1 (the name of your module may be

different)

iii) Click No when asked if you want to Export.

5. Open the Microsoft Excel Objects folder.

6. for each worksheet, and for This Workbook:

i) Double-click on the object name, to open its code module. In

this sample, you'd double-click on Sheet1 (Sheet1)

ii) On the keyboard, press Ctrl+A to select all the code (even if

the code module looks empty)

iii) Press the Delete key.

7. Look for a Forms folder, and open it.

8. Delete any User Forms that it contains.

9. Look for a Class Modules folder, and open it.

10. Delete any class modules that it contains.

11. Close the Visual Basic Editor.

12. Save the changes to the workbook.

Buttons to Run Excel Macros

When a button is drawn onto a sheet the assign macro is not

displayed. When right-clicking on the button the "Assign

Macro" context menu item is not present. There are buttons

from the Forms toolbar and there are buttons from the

Vol:1 Issue:1 ISSN 2278 - 215X

mailto:rsehgal@amity.edu
http://www.mjtnet.com/macro_scheduler.htm

International Journal of Advances in Electronics Engineering

335

ControlToolbox. If "Assign Macro" is not an option then it's

from the Control Toolbox.

Choose "View code" and call your macro from it like this:

Private Sub CommandButton1_Click()

 Call Macro1

End Sub

C. Benefits

1. It Automate and Streamline Software Processes.

2. It Save Time, Solve Problems, Simplify Work.

3. It Cut Development Costs.

4. Improve Reliability and Accuracy.

5. Huge Return on Investment.

D. Features

1. It has Comprehensive, Reliable Automation for any

Software or Business Process.

2. Keyboard & Mouse Macro Recorder with Advanced

Window Sensing Technology.

3. Easily Create Scripts inMinutes.

4. Convert Macros to EXE files for distribution on otherPCs.

5. Unique See Screen Image Recognition functions for

Automation of any process.

6. Flexible Scheduler & Unique Auto Logon Technology

ForUnattended Operation.

7. Over 250 Powerful Built-in Script Commands,

Loops, Conditionals etc, Plus Microsoft VBScript.

E. Role of Macro Scheduler

In this paper, we have used macro scheduler procedure to

automate our testing process. In this way we have switch

from manual testing to automated testing. Use of

macroScheduler have improved the time consumed, bug

testing increase the no of test cases performed.

III.MANUAL TESTING V/S AUTOMATION TESTING

A. Testing

Software testing can define as the process of validating and

verifying that a software program/application/product:

1. meets the business and technical requirements that guided its

design and development;

2. Works as expected; and

3. Can be implemented with the same characteristics.

B. Manual Testing

It is a testing technique where the software is tested manually by

test engineer, who prepare all the test cases and executes

manually step by step on the application, and indicates whether

a particular step was accomplished successfully or whether it

failed, performs manual testing,. At the time of manual testing

tester only need test case and the related information, for the

execution of desired test case. While testing our application,

complete test provides an opportunity to manually create and

manage tests. In a project, when manual testing item is added, a

collection of steps with detailed information and description can

be created to perform the desired application when being tested.

According to test strategy of test plan, test case is also written

for all type of testing. In software, on the basis of design

document, test engineer can write test case. Any testing includes

manual testing. In the initial phase of software development,

when the interaction between software and its user are not stable

enough, it is useful.

TABLE III

MANUAL TESTING V/S AUTOMATED TESTING

S.no Manual testing Automated testing

1. Suitable for little

repetition such as

exploratory testing or late

development verification

testing.

Suitable for several

repetitions.

2. Manual testing is not

reusable.

Automated testing is

completely reusable.

3. Provides limited visibility. Provides global

visibility.

4. Ends up being an

integration test.

One can test unit,

system and module.

5. It is covered in limited

cost.

It is costly then

manual.

6. It takes more time to cover

all cases.

Easy to cover up all

cases in a limited

time period.

7. It is boring and same for

whole period.

New things can learn

and it is interesting.

C. Automated Testing

It is a technique, where the script can be run on any testing tool

by test engineer. For new test engineer it is not an easy process

to test the software using script in automated tools. So for

writing a good script against any test case, the engineer should

have a good programming knowledge. The plan is followed by

these people to make various scripts for various testing. It is

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advances in Electronics Engineering

336

reusable, once a test case is created then it can be use for future

reference. It has a good feature of Email Notifications, on failure

or threshold levels there is an automated notification. This may

be the test runner or tooling that executes it. It Support

unattended test runs for integration with build processes and

batch runs. Continuous Integration servers require this, support

distributed execution environment and distributed application

support.

D. Coding Process with Manual Tests

i) Write code
ii) Uploading the code to some place
iii) Build it

iv) Running the code manually (in many cases filling up forms

etc stepby step)

v) Check Log files, Database, External Services, Values of

variablenames, Output on the screen etc

vi) If it does not work, repeat the above process

E. .Coding Process with Automated Unit Tests

i) Write code to pass the tests

ii) Auto-compile and run

iii) If tests fail -> make appropriate modifications

iv) If tests pass -> repeat for next method

F. Coding Process with Automated Functional Tests

i) Write one or more test cases

ii) Auto-compile and run to see the tests fail

iii) Finish writing code (with all unit tests passing)

iv) Write a Functional Test using any tool

v) Auto-compile and run

vi) If tests fail -> make appropriate modifications

vii) If tests pass -> move ahead

IV.CONCLUSION

Automated testing streamlines the QA process and saves

precious resources, time and money. As the project continues

along it s life cycle it is easy to run previously created test

scripts and add new test cases. The time saved by running test

scripts over manual checklists is enormous and bugs can be

found more quickly. Test scenarios can easily be run repeatedly

for added confidence in your product. Developers, QA engineers

and customers all benefit. With Macro Scheduler s powerful

GUI automation routines, output functions, VBScript capability

and complex expressions it is easy to build advanced test

scenarios for all application.

[1] Mike Andrews, James A. Whittaker, How to Break Web Software:
Functional and Security Testing of Web Applications and Web

Services, Addison Wesley.

[2] The Web Testing Companion: Insider’s Guide to Efficient and

Effective Tests, Wiley, 2003.

[3] Adam Barr, Find the Bug: A Book of Incorrect Programs, Addison-

Wesley Professional, 2004.

[4] Beck, Kent, Test-Driven Development: By Example, Addison-

Wesley, Boston, MA, 2003.

[5] Boris Beizer, Black Box Testing: Techniques for Functional Testing

of Software and Systems, John Wiley & Sons, Inc., New York, 1995.

[6] Robert V. Binder, Testing Object-Oriented Systems: Models,
Patterns and Tools, the Addison-Wesley Object Technology Series,

Addison-WesleyProfessional, 1999.

[7] Rex Black, Managing the Testing Process: Practical Tools and

Techniques for Managing Hardware and Software Testing, 2nd
Edition, Wiley, 2002.

[8] Rex Black, Critical Testing Processes: Plan Prepare, Perform,
Perfect, Addison-Wesley Professional.

[9] Ilene Burnstein, Practical Software Testing, Springer, 2003.

[10] Lee Copeland, A Practitioner’s Guide to Software Test Design,

Artech House Publishers, Boston, MA, 2004.

[11] Rick D. Craig, Stefan P. Jaskiel, Systematic Software Testing, Artech

House Publishing, Norwood, MA, 2002.

[12] Crispin, Lisa, Tip House, Testing Extreme Programming, Addison-

Wesley, Boston, MA, 2003.

[13] Robert Culbertson, Chris Brown, Gary Cobb, Rapid Testing,

Software Quality Institute Series, Prentice Hall PRT, Upper Saddle
River, NJ, 2002.

[14] Aristides Dasso, Ana Funes, Verification, Validation and Testing in
Software Engineering, Idea Group Publishing, 2006.

[15] Rodger D. Drabick, Best Practices for the Formal Software Testing

Process: A Menu of Testing Tasks, Dorset House Publishing

Company, 2003.

[16] Paul Hamill, Unit Test Frameworks, O’Reilly Media, Inc, 2004.

[17] Paul C. Jorgensen, Software Testing: A Craftsman’s Approach, 2nd
Edition, CRC, 2002.

Vol:1 Issue:1 ISSN 2278 - 215X

http://en.wikipedia.org/wiki/Continuous_Integration

