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Abstract: In this work we derive two families of radix-4 

factorizations for the FFT (Fast Fourier Transform) that have the 

property that both inputs and outputs are addressed in natural 

order. These factorizations are obtained from another two 

families of radix-2 algorithms that have the same property. The 

radix-4 algorithms obtained have the same mathematical 

complexity (number of multiplications and additions) that 

Cooley-Tukey radix-4 algorithms but avoid de bit-reversal 

ordering applied to the input or at the output. 

Index Terms- Fast Fourier Algorithms, Fast algorithms 

 

I. INTRODUCTION: 

The discrete Fast Fourier Transform algorithm, well known by 

the acronym FFT, has found a big deal of applications in 

engineering since it was first discovered by Gauss [1] and 

rediscovered by Cooley and Tukey [2] in the 1960s. In fact, 

under the acronym FFT we have a wide variety of algorithms 

and therefore there is a large bibliography about the field. Only 

to give a set of relevant references: there are algorithms 

referred to as higher radix [3][4], mixed-radix [5], prime-factor 

[6][19], Winograd [7], split-radix[8][9][20][21], identical 

geometry from stage-to-stage FFT [12], recursive [10], 

combination of decimation-in-time and the decimation-in-

frequency [11], among many variants. An interesting overview 

on the estate of the art of FFT could be found in [13] and in 

[30]. 

Today, one of the interests in FFT research algorithms is to 

reduce its arithmetic complexity by minimizing the total 

number of real multiplications and additions as has been done 

recently in [21]. However, it is interesting to note that the 

performance of FFT on computers is determined by many 

other factors such as cache or central processing unit pipeline 

optimization; this is, the hardware in which the algorithm is 

computed.  

Some matrix representations for FFT and other fast discrete 

signal transforms are found in [14], [15], [16], [17] and [18]. 

Following the matrix notation a fast algorithm can be thought 

as a sparse factorization of the transform matrix in which the 

new organization of operations reduces the complexity of the 

direct full matrix vector multiplication problem (of order N
2
 ) 

drastically (to order Nl.og2N), But, as a result, the calculation 

of the FFT in terms of sparse factors provided by almost all the 

factorizations, the output vector appears disordered. So, in 

practice, many FFT algorithms need some input or output data 

permutation and the bitreversa ordering is the one that most 

frequently appears. In some algorithms the permutation is 

applied at the input and in others it is applied at the output. 

Although the bit-reversal ordering has a very efficient 

hardware implementation, its software implementation has 

been recent improved in [22 - 27]. In most applications the 

order must be re-established by performing a permutation of 

the elements. 

On concerning FFT ordered algorithms, in [29] they are 

proposed to be used in vector processors. In reference [28] 

appear two flow graphs for an eight point FFT sorted 

algorithms according to Stockham. In [28] the authors change 

the Cooley-Tukey flow graphs to obtain the other algorithms 

presented in it by applying flow graph transform rules; method 

which is easy only in some cases and above all when the flow 

graph has reduced dimensions. The Stockham algorithms are 

not derived in [28] in which a unique reference links to a 

private communication. In [30] input-output FFT ordered 

algorithms are derived from the Cooley-Tokey factorizations 

inserting a –different - permutation matrix between factors. In 

[31] two recursive properties involving matrix FN and FN/2 are 

presented and by iterating them and with a little of algebra, the 

sorted radix-2 algorithms are easily obtained. In this work, we 

extend the radix-2 results from [31] to obtain radix-4 solutions. 

To do this we have considered two ways. One is based on the 

extension of the recursion properties given in [31] to relate the 

matrices FN and FN/4 and then, using a similar method, to derive 

the factorization. The other way we have chosen is based on 

the idea that a radix-4 factor can be written in terms of two 

consecutive radix -2 factors. This way provides more detailed 

information about the structure of the radix -4 basic operation, 

sometimes called dragonfly, in order of performing them 

efficiently. A dragonfly operation computes groups of four 

output elements from groups of 4 input elements. Our goal is 

to obtain radix-4 factorizations that avoid the reordering 

operation. 

In section 2 we briefly present the used notation. In section 3 

we present the radix-2 sorted algorithms derived in [31]. In 

section 4 we derive the radix-4 sorted algorithms and finally 

we give some conclusions. 

 

II. USED NOTATION 
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Given that in this work we always manage square matrices in 

what follows, an N*N square matrix is denoted by a bold 

capital letter with subscript N. Number N is always a power of 

two. 

The elements of matrix AN positioned at the row m and the 

column n are denoted by amn. Sometimes we will use the 

notation AN={amn} . 

A column vector is represented by a bold small letter and, 

since its length can always be known from the context in this 

paper, its subscript indicates the position of the column in a 

matrix. 

The N*N identity matrix is denoted by IN. Then IN can be 

written by its column vectors ei as IN = [eI e2 ... en]. With ON we 

denote the N*N zero matrix. 

The matrix PN is the NxN even-odd permutation matrix. PN in 

terms of the previously defined vectors ei takes the form PN= 

[eI e3 ... en-I e2 e, ... en]. 

Most of the times we will use the Kronecker product to show a 

particular matrix structure. The symbol ® stands for the right 

Kronecker product and, for arbitrary square matrices AM and 

BN, the Kronecker product AM ® BN is an MN * MN matrix that 

can be written using the elements amn of matrix AM and BN as: 

 

 
 

Next, we recall some useful properties involving the 

Kronecker product. We have: 

 

 
 

Note that superscript n in a matrix means the power n of this 

matrix. Finally, the factorization of an arbitrary matrix MN in 

terms of n factors (or stages) EN (i) is written as follows: 

 

 
 

III. FFT RADIX-2 ALGORITHMS WITH ORDERED 

INPUT AND OUTPUT DATA 

 

Consider N=2
n
 and j the square root of -1. The Fourier 

transform matrix FN is defined as: 

 
Being x = [x(1) ··· X(N)]

T
 the ordered input vector, the 

ordered transformed vector y = [X(1)··· X(N)]
T
 is obtained by 

performing the operation y=FNx 

 

To obtain radix-2 FFT algorithms with input and output 

ordered data in [31] were introduced two recursion properties 

involving matrix FN and matrix FN/2. 

Let B2
i
 denote the matrix defined by: 

 
Where 

 
is a diagonal matrix. Equation (6) can also be written as: 

 
being  

 
Then, the two recursions are: 

 

 
By iterating (10) and (11) in [31] the next two sets of solutions 

are obtained. 

From (10) the full factorization takes the form: 

 

 
with factors (stages) taking the form: 

 

 
 

From (11) the full factorization takes the form: 
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with factors taking the form: 

 

 
Note that in (12) and (14) the results are presented in an 

ordered form and no permutation matrices appear at the 

beginning or at the end of the factor chain. 

In both cases the basic operation that the factors perform is 

called (radix-2) butterfly and it is represented graphically in 

fig. 1. 

 
Fig. I. Radix-2 butterfly representation showing the dependence between two 

inputs and two outputs. 

 

Fig.2 stands for the interconnection pattern of a FFT of N=8 

point in terms of butterflies using the factorization given in 

(12) and Fig. 3 stands for the interconnection pattern of a FFT 

of N=8 point in terms of butterflies using the factorization 

given in (14). 

 

 
Fig.2.Interconnection pattern representation for the first factorization in terms 

of butterflies given N=8. .Inputs and outputs are addressed in natural order. 

 

 

Fig.3.Interconnection pattern representation for the second factorization in 

terms of butterflies given N=8. Inputs and outputs are addressed in natural 
order. 

 

IV. FFT RADIX-4 ALGORITHMS WITH ORDERED 

INPUT AND OUTPUT DATA 

If N, the length of the transform, is a power of 4 we can obtain 

radix-4 decompositions. Of course, if N is a power of 4 it is 

also a power of 2. 

In a more general point of view, take R = 2
F
  (being R the radix 

of the decomposition) and consider than N satisfies that N = 2
n
 

= R
m
 • Then any discrete Fourier transform of size N admits a 

radix-R factorization with F radix-R factors E'(i) that can 

easily be written as a product of F successive radix 2 factors 

E(i): 

 

 
The radix-R factorization, using the notation introduced in 

(16), becomes: 

 

 
 

Then in the radix-4 case in which we are interested we have 

R=4 and F=2. Given (12) and (16) the new radix-4 

factorization takes the form: 

 
 

If we analyze the radix-4 factors in (18) written as products of 

two consecutives radix-2 ones and, by applying the properties 

(2) and (3), we have: 

 

 
So, the first family ofradix-4 factorization takes the form: 
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The other family that can be found, now from (14) and (16), is 

and if we rewrite the radix-4 factors in (21) using properties 

(2) and  (3), we have: 

 
 

So we obtain the second family of factorizations as: 

 

 
What is interesting from expressions (20) and (23) is that, 

using the representation of matrices B given in (8), we can 

obtain a very efficient dragonfly with the minimum number of 

complex multiplications. 

In these cases the basic operation that the factors perform is 

called radix-4 butterfly or dragonfly and it is represented 

graphically in fig A. 

 
Fig.4. Radix-4 butterfly represent at ion showing the dependence between four 

inputs and four outputs. 

 

A way to see the relation between inputs and outputs stage to- 

stage could be done by analyzing the positions of the non-zero 

elements of each factor. Then, from the indices m, n of the 

non-zero elements in each sparse matrix representing a stage 

(or factor), we can observe that the n input element is needed 

to calculate the m output element in the i-th stage. We can 

observe that four elements are needed at the input to calculate 

four outputs in the basic operation graphically represented in 

fig A. To better see this, as an example, consider the 

expression (20) when m=2 and n=4. We have: 

 
To show the mapping between the mathematics and the graphs 

lets only consider de first stage of F16. To obtain it step by 

step, initially considerer matrix B2P2, this is: 

 

 
 

which computes two outputs from two inputs. The operation 

 

 
Do not change the input-output relation. Next product also 

preserves the 2 input-2 output relation 

 

 
 

But the term 

 
Clearly changes the input-output relation (4 inputs/ 4 outputs) 

in the way represented in fig 4. Finally, the stage will be: 
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where we can see four identical radix-4 butterflies. This factor 

(or stage) is represented as stage I in fig. I. In the case of doing 

the same operations with the second factor of F16 we will 

obtain the stage 2. 

Fig. 5 stands for the interconnection pattern of a FFT of  N=16 

points in terms of dragonflies using the factorization given in 

(20) and Fig. 6 stands for the interconnection pattern of a FFT 

of N=16 points in terms of dragonflies using the factorization 

given in (23). In both cases we have 2 stages. Note than both 

topologies are symmetric. 

 

Fig. 5. Interconnection pattern representation for radix -4 first factorization in 

terms of dragonflies given N= 16. .Inputs and outputs are addressed in natural 
order. 

 

 
Fig. 6. Interconnect ion pattern representation for radix-4 second factorization 

in terms of dragonflies given N=16. Inputs and outputs are addressed in natural 

order 

 

V. CONCLUSIONS 

This work extends the radix-2 families of factorizations 

presented in [31] that have the property that both inputs and 

outputs are addressed in natural order to obtain another two 

radix-4 factorizations with the same property. The algorithms 

obtained have the same complexity in terms of floating-point 

operations that the well programmed CooleyTukey radix-4 

algorithms but avoiding the bit-reversal ordering applied at the 

input samples or at the output. To achieve a full radix-4 

decomposition N, the length of the transform, must be a power 

of four. We observe also that the two solutions have a 

symmetric interconnection pattern. 
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