
International Journal of Advacnes in Electronics Engineering

207

 Radix-4 Factorizations for the FFT with Ordered

Input and Output

Vikrant
1
, Ritesh Vyas

2
, Sandeep Goyat

3
, Jitender Kumar

4
, Sandeep Kaushal

5

YMCA University of Science & Technology, Faridabad (Haryana), India

Vikrant_bmit@rediffmail.com
1
, ritesh.vyas157@gmail.com

2
, sandeep.kandela85@gmail.com

3
, er.singlajitender@gmail.com

4

sandeepkaushal@in.com
5

Abstract: In this work we derive two families of radix-4

factorizations for the FFT (Fast Fourier Transform) that have the

property that both inputs and outputs are addressed in natural

order. These factorizations are obtained from another two

families of radix-2 algorithms that have the same property. The

radix-4 algorithms obtained have the same mathematical

complexity (number of multiplications and additions) that

Cooley-Tukey radix-4 algorithms but avoid de bit-reversal

ordering applied to the input or at the output.

Index Terms- Fast Fourier Algorithms, Fast algorithms

I. INTRODUCTION:

The discrete Fast Fourier Transform algorithm, well known by

the acronym FFT, has found a big deal of applications in

engineering since it was first discovered by Gauss [1] and

rediscovered by Cooley and Tukey [2] in the 1960s. In fact,

under the acronym FFT we have a wide variety of algorithms

and therefore there is a large bibliography about the field. Only

to give a set of relevant references: there are algorithms

referred to as higher radix [3][4], mixed-radix [5], prime-factor

[6][19], Winograd [7], split-radix[8][9][20][21], identical

geometry from stage-to-stage FFT [12], recursive [10],

combination of decimation-in-time and the decimation-in-

frequency [11], among many variants. An interesting overview

on the estate of the art of FFT could be found in [13] and in

[30].

Today, one of the interests in FFT research algorithms is to

reduce its arithmetic complexity by minimizing the total

number of real multiplications and additions as has been done

recently in [21]. However, it is interesting to note that the

performance of FFT on computers is determined by many

other factors such as cache or central processing unit pipeline

optimization; this is, the hardware in which the algorithm is

computed.

Some matrix representations for FFT and other fast discrete

signal transforms are found in [14], [15], [16], [17] and [18].

Following the matrix notation a fast algorithm can be thought

as a sparse factorization of the transform matrix in which the

new organization of operations reduces the complexity of the

direct full matrix vector multiplication problem (of order N
2
)

drastically (to order Nl.og2N), But, as a result, the calculation

of the FFT in terms of sparse factors provided by almost all the

factorizations, the output vector appears disordered. So, in

practice, many FFT algorithms need some input or output data

permutation and the bitreversa ordering is the one that most

frequently appears. In some algorithms the permutation is

applied at the input and in others it is applied at the output.

Although the bit-reversal ordering has a very efficient

hardware implementation, its software implementation has

been recent improved in [22 - 27]. In most applications the

order must be re-established by performing a permutation of

the elements.

On concerning FFT ordered algorithms, in [29] they are

proposed to be used in vector processors. In reference [28]

appear two flow graphs for an eight point FFT sorted

algorithms according to Stockham. In [28] the authors change

the Cooley-Tukey flow graphs to obtain the other algorithms

presented in it by applying flow graph transform rules; method

which is easy only in some cases and above all when the flow

graph has reduced dimensions. The Stockham algorithms are

not derived in [28] in which a unique reference links to a

private communication. In [30] input-output FFT ordered

algorithms are derived from the Cooley-Tokey factorizations

inserting a –different - permutation matrix between factors. In

[31] two recursive properties involving matrix FN and FN/2 are

presented and by iterating them and with a little of algebra, the

sorted radix-2 algorithms are easily obtained. In this work, we

extend the radix-2 results from [31] to obtain radix-4 solutions.

To do this we have considered two ways. One is based on the

extension of the recursion properties given in [31] to relate the

matrices FN and FN/4 and then, using a similar method, to derive

the factorization. The other way we have chosen is based on

the idea that a radix-4 factor can be written in terms of two

consecutive radix -2 factors. This way provides more detailed

information about the structure of the radix -4 basic operation,

sometimes called dragonfly, in order of performing them

efficiently. A dragonfly operation computes groups of four

output elements from groups of 4 input elements. Our goal is

to obtain radix-4 factorizations that avoid the reordering

operation.

In section 2 we briefly present the used notation. In section 3

we present the radix-2 sorted algorithms derived in [31]. In

section 4 we derive the radix-4 sorted algorithms and finally

we give some conclusions.

II. USED NOTATION

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advacnes in Electronics Engineering

208

Given that in this work we always manage square matrices in

what follows, an N*N square matrix is denoted by a bold

capital letter with subscript N. Number N is always a power of

two.

The elements of matrix AN positioned at the row m and the

column n are denoted by amn. Sometimes we will use the

notation AN={amn} .

A column vector is represented by a bold small letter and,

since its length can always be known from the context in this

paper, its subscript indicates the position of the column in a

matrix.

The N*N identity matrix is denoted by IN. Then IN can be

written by its column vectors ei as IN = [eI e2 ... en]. With ON we

denote the N*N zero matrix.

The matrix PN is the NxN even-odd permutation matrix. PN in

terms of the previously defined vectors ei takes the form PN=

[eI e3 ... en-I e2 e, ... en].

Most of the times we will use the Kronecker product to show a

particular matrix structure. The symbol ® stands for the right

Kronecker product and, for arbitrary square matrices AM and

BN, the Kronecker product AM ® BN is an MN * MN matrix that

can be written using the elements amn of matrix AM and BN as:

Next, we recall some useful properties involving the

Kronecker product. We have:

Note that superscript n in a matrix means the power n of this

matrix. Finally, the factorization of an arbitrary matrix MN in

terms of n factors (or stages) EN (i) is written as follows:

III. FFT RADIX-2 ALGORITHMS WITH ORDERED

INPUT AND OUTPUT DATA

Consider N=2
n
 and j the square root of -1. The Fourier

transform matrix FN is defined as:

Being x = [x(1) ··· X(N)]

T
 the ordered input vector, the

ordered transformed vector y = [X(1)··· X(N)]
T
 is obtained by

performing the operation y=FNx

To obtain radix-2 FFT algorithms with input and output

ordered data in [31] were introduced two recursion properties

involving matrix FN and matrix FN/2.

Let B2
i
 denote the matrix defined by:

Where

is a diagonal matrix. Equation (6) can also be written as:

being

Then, the two recursions are:

By iterating (10) and (11) in [31] the next two sets of solutions

are obtained.

From (10) the full factorization takes the form:

with factors (stages) taking the form:

From (11) the full factorization takes the form:

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advacnes in Electronics Engineering

209

with factors taking the form:

Note that in (12) and (14) the results are presented in an

ordered form and no permutation matrices appear at the

beginning or at the end of the factor chain.

In both cases the basic operation that the factors perform is

called (radix-2) butterfly and it is represented graphically in

fig. 1.

Fig. I. Radix-2 butterfly representation showing the dependence between two

inputs and two outputs.

Fig.2 stands for the interconnection pattern of a FFT of N=8

point in terms of butterflies using the factorization given in

(12) and Fig. 3 stands for the interconnection pattern of a FFT

of N=8 point in terms of butterflies using the factorization

given in (14).

Fig.2.Interconnection pattern representation for the first factorization in terms

of butterflies given N=8. .Inputs and outputs are addressed in natural order.

Fig.3.Interconnection pattern representation for the second factorization in

terms of butterflies given N=8. Inputs and outputs are addressed in natural
order.

IV. FFT RADIX-4 ALGORITHMS WITH ORDERED

INPUT AND OUTPUT DATA

If N, the length of the transform, is a power of 4 we can obtain

radix-4 decompositions. Of course, if N is a power of 4 it is

also a power of 2.

In a more general point of view, take R = 2
F
 (being R the radix

of the decomposition) and consider than N satisfies that N = 2
n

= R
m
 • Then any discrete Fourier transform of size N admits a

radix-R factorization with F radix-R factors E'(i) that can

easily be written as a product of F successive radix 2 factors

E(i):

The radix-R factorization, using the notation introduced in

(16), becomes:

Then in the radix-4 case in which we are interested we have

R=4 and F=2. Given (12) and (16) the new radix-4

factorization takes the form:

If we analyze the radix-4 factors in (18) written as products of

two consecutives radix-2 ones and, by applying the properties

(2) and (3), we have:

So, the first family ofradix-4 factorization takes the form:

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advacnes in Electronics Engineering

210

The other family that can be found, now from (14) and (16), is

and if we rewrite the radix-4 factors in (21) using properties

(2) and (3), we have:

So we obtain the second family of factorizations as:

What is interesting from expressions (20) and (23) is that,

using the representation of matrices B given in (8), we can

obtain a very efficient dragonfly with the minimum number of

complex multiplications.

In these cases the basic operation that the factors perform is

called radix-4 butterfly or dragonfly and it is represented

graphically in fig A.

Fig.4. Radix-4 butterfly represent at ion showing the dependence between four

inputs and four outputs.

A way to see the relation between inputs and outputs stage to-

stage could be done by analyzing the positions of the non-zero

elements of each factor. Then, from the indices m, n of the

non-zero elements in each sparse matrix representing a stage

(or factor), we can observe that the n input element is needed

to calculate the m output element in the i-th stage. We can

observe that four elements are needed at the input to calculate

four outputs in the basic operation graphically represented in

fig A. To better see this, as an example, consider the

expression (20) when m=2 and n=4. We have:

To show the mapping between the mathematics and the graphs

lets only consider de first stage of F16. To obtain it step by

step, initially considerer matrix B2P2, this is:

which computes two outputs from two inputs. The operation

Do not change the input-output relation. Next product also

preserves the 2 input-2 output relation

But the term

Clearly changes the input-output relation (4 inputs/ 4 outputs)

in the way represented in fig 4. Finally, the stage will be:

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advacnes in Electronics Engineering

211

where we can see four identical radix-4 butterflies. This factor

(or stage) is represented as stage I in fig. I. In the case of doing

the same operations with the second factor of F16 we will

obtain the stage 2.

Fig. 5 stands for the interconnection pattern of a FFT of N=16

points in terms of dragonflies using the factorization given in

(20) and Fig. 6 stands for the interconnection pattern of a FFT

of N=16 points in terms of dragonflies using the factorization

given in (23). In both cases we have 2 stages. Note than both

topologies are symmetric.

Fig. 5. Interconnection pattern representation for radix -4 first factorization in

terms of dragonflies given N= 16. .Inputs and outputs are addressed in natural
order.

Fig. 6. Interconnect ion pattern representation for radix-4 second factorization

in terms of dragonflies given N=16. Inputs and outputs are addressed in natural

order

V. CONCLUSIONS

This work extends the radix-2 families of factorizations

presented in [31] that have the property that both inputs and

outputs are addressed in natural order to obtain another two

radix-4 factorizations with the same property. The algorithms

obtained have the same complexity in terms of floating-point

operations that the well programmed CooleyTukey radix-4

algorithms but avoiding the bit-reversal ordering applied at the

input samples or at the output. To achieve a full radix-4

decomposition N, the length of the transform, must be a power

of four. We observe also that the two solutions have a

symmetric interconnection pattern.

 REFERENCES

[1] M. T. Heideman, D. H. Johnson, and C. S. Burrus,

"Gauss and the History of the FFT," IEEE Acoustics, Speech, and

Signal Processing Magazine, vol. 1, pp. 14-21, Oct. 1984.
[2] J. W. Cooley, 1. W. Tukey "An Algorithm for the

Machine Calculation of Complex Fourier Series". Math. Of

Computations vol. 19, p.p. 297-301, Apr. 1965.
[3] G. D. Bergland, "A Radix-Eight Fast-Fourier Transform

Subroutine for Real-Valued Series," IEEE Trans. Audio

Electroacoust, vol. 17, no. 2, pp. 138-144, June 1969.
[4] D. Takahashi, "A Radix-16 FFT Algorithm Suitable for Multiply-

Add Instruction based on Goedecker Method" Intern. Conference

on Acoustics, Speech, and Signal Processing, ICASSP-2003, vol. 2,
pp. II - 665-668, 6-10 April 2003.

[5] R. C. Singleton, "An Algorithm for Computing the Mixed Radix

Fast Fourier Transform" IEEE Trans. Audio Electroacoust. vol. 1,

no. 2, pp. 93-103, June 1969.

Vol:1 Issue:1 ISSN 2278 - 215X

International Journal of Advacnes in Electronics Engineering

212

[6] D. PI. Kolba and T. W. Parks, "A Prime Factor FFT Algorithm

Using High-Speed Convolution," IEEE Trans. Acoust., Speech,
Signal Processing, vol. 25, no. 4, pp. 281294, Aug. 1977.

[7] S. Winograd, "On Computing the Discrete Fourier Transform,"

Math. Comput., vol. 32, no. 141, pp. 175-199, Jan. 1978.
[8] H. V. Sorensen and C. S. Burrus, "A New Efficient Algorithm for

Computing a Few DFT Points," IEEE Trans. Acoust., Speech,

Signal Proc., vol. 35, no. 6, pp. 849-863, June 1987.
[9] D. Takahashi, "An Extended Split-Radix FFT Algorithm," IEEE

Signal Processing Letters, vol. 8, no. 5, pp. 145-147, May 2001.

[10] A. R. Varkonyi-Koczy, "A Recursive Fast Fourier Transform
Algorithm," IEEE Trans. Circuits and Systems, II, vol. 42, pp. 614-

616, Sep. 1995.

[11] A. Saidi, "Decimation-in-Time-Frequency FFT Algorithm," Proc.
IEEE International Conf. on Acoustics, Speech, and Signal

Processing, vol. 3, pp. 453-456, 19-22 April 1994.

[12] M. C. Pease "An adaptation of the fast Fourier transform for

parallel processing". J. Assoc. Comput. vol. 15, pp. 252-264, April

1968.

[13] P. Duhamel and M. Vetterli "Fast Fourier transforms: A tutorial
review and a state of the art" Signal Process., vol. 19, pp. 259-299,

1990.

[14] A. Glassman, "A generalization of the fast Fourier transform,"
IEEE Trans. Comput., vol. C-19, pp. 105-116, Feb. 1970.

[15] M. Drubin, "Kronecker product factorization of the FFT matrix,"

IEEE Trans. Comput., vol. C-20, pp. 590-593, May 1971.
[16] H. Sloate, "Matrix Representations for Sorting and the Fast Fourier

Transform" IEEE Trans.on Circuits and Systems, vol. 21, no. 1, pp.

109-116, January 1974
[17] Granata, M. Conner, R. Tolimieri, "Recursive Fast Algorithms and

the Role of the Tensor Product" IEEE Trans.on Signal Proc.,
vol.40, no. 12, pp. 2921-2930, Dec 1992.

[18] S. Egner, M. Puschel, "Automatic Generation of Fast Discrete

Signal Transforms" IEEE Trans.on Signal Proc., vol. 49, no. 9, pp.

1992-2002, Dec. 200l.

[19] S. C. Chan and K. L. Ho, "On indexing the prime-factor fast

Fourier transform algorithm" IEEE Trans. Circuits and Systems,
vol. 38, no. 8, pp. 951-953, 1991.

[20] P. Duhamel, H. Hollmann, "Split-radix FFT algorithm," Electron.

Lett. vol. 20, no. 1, pp. 14-16, 1984.
[21] S. G. Johnson and M. Frigo, "A modified split-radix FFT with

fewer arithmetic operations", IEEE Trans. Signal Processing, vol.

55, no. 1, pp. 111-119, 2007.
[22] R.J. Polge; B.K. Bhagavan, 1.M. Carswell, "Fast Computational

Algorithms for Bit Reversal" IEEE Transactions on Computers,

vol. C-23, no. 1, pp. 1-9, Jan. 1974.
[23] S. Walker, "A new bit reversal algorithm"; IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 38, no. 8, pp. 1472-

1473, Aug. 1990.
[24] A. Biswas, "Bit reversal in FFT from matrix viewpoint IEEE

Transactions on Signal Processing", vol. 39, no. 6, pp. 14151418,

June 1991.
[25] A. Edelman, S. Heller, S. Lennart Johnsson, "Index transformation

algorithms in a linear algebra framework" IEEE Transactions on

Parallel and Distributed Systems, vol. 5, no. 12, pp. 1302-1309,
Dec. 1994.

[26] K. Drouiche, "A new efficient computational algorithm for bit

reversal mapping", IEEE Transactions on Signal Processing, vol.
49, no. l,pp. 251-254, Jan. 2001

[27] Prado; "A new fast bit-reversal permutation algorithm based on a

symmetry", IEEE Signal Processing Letters, vol. 11, no. 12, pp.
933-936, Dec. 2004.

[28] W. T. Cochrane, 1. W. Cooley, 1. W. Favin, D. L. Helms, R.A.

Kaenel, W. W. Lang, G. C. Mailing, D. E. Nelson, C. M. Rader,
and P. D. Welch, "What is the fast Fourier transform?", IEEE

Trans. Audio Electroacoust, vol. 15, pp. 45-55, 1967.

[29] P. N. Swarztrauber, "FFT Algorithms for Vector Computers",
Parallel Computing, col. 1, pp. 45-63, 1984.

[30] C. Van Loan, "Computational Frameworks for the Fast Fourier

Transform", SIAM Press, Philadelphia, PA, 1992.
[31] P. Marti-Puig, "Two Families of Radix-2 FFT Algorithms with

Ordered Input and Output Data ", IEEE Signal Processing Letters,

vol. 16, no. 2, pp. 65-68, Feb. 2009.
[32] P. Marti-Puig, R.R Bolano “ Radix-4 FFT Algorithms with ordered

Input and Output Data DSP 2009

Vol:1 Issue:1 ISSN 2278 - 215X

