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Abstract—The EMBDDED ZEROTREE WAVELET (EZW) 

algorithm, as presented by J. Shapiro, is a simple yet powerful 

algorithm, in which bit-streams are generated in order of their 

significance in containing the image information [1]. The original 

EZW algorithm scans the entire wavelet decomposed image, at a 

stroke, during each pass. This work presents a modified method 

for coding images using EZW method, which works on the 

principal of fragmentation. The proposed method takes the 

smallest unit cell, generated from the wavelet decomposed image, 

to encode at a time .This makes the encoding times independent 

of the level of wavelet decomposition. Results show that the 

proposed algorithm is more efficient in performance, in terms of 

encoding times, as compared to the original algorithm. Moreover, 

the difference between the encoding times using the original and 

proposed method, tends to increase with an increase in the 

dimensions of the image under test. 

Index Terms—Compression, EZW, zerotrees. 

I.  INTRODUCTION 

TRANSFORM coding forms an integral part of the image 
compression techniques. Transform Coding involves a 
reversible, linear and unique set of coefficients, which are 
often quantized and then coded. This work is inspired by the 
success of the embedded coding algorithm known as 
EMBEDDED ZEROTREE WAVELET coding. Wavelet 
decomposition makes the energy distributed throughout the 
entire image to be clustered in a few sub bands, thereby 
creating a special parent-child-grandchild relationship (in the 
wavelet decomposed coefficients) known as TREE. Few such 
trees having a special relationship tend to become 
ZEROTREES, as explained in later section. This technique 
thereby takes advantage of the hierarchical structure of the 
wavelet decomposed sub images, using the parent-child-
grandchild relationships for compression. 

Another significant feature is the embedded coding which 
helps to transmit the image progressively thereby with each 
new set of next step encoded coefficients improving the details 
of the already decoded image. Using an embedded code, a 
coder can terminate the encoding at any desired step taking 
into account a desired parameter like bit-rate, as against the 
image quality. Similarly, for a given bit stream, the decoder 
can stop decoding at any step thereby producing reconstructed 
image corresponding to a lower-rate encoding. Optimally, for 
a given bit-rate, the non-embedded code must be more 
efficient than the embedded code, as it is free from those 
constraints, which are imposed by the embedded coding. 

However, overweighting this disadvantage, a large number of 
advantages like better PSNR and reduced MSE are associated 
with embedded coders. The EZW algorithm gives a good 
performance in terms of time taken for encoding, when 
relatively images of smaller dimensions are coded using it. 
However, as the image dimensions increases the time taken 
for encoding goes on increasing with it.  

II. EMBEDDED WAVELET ZEROTREE CODING 

A. Wavelet Decomposition 

The first step in embedded wavelet zerotree coding 
involves decomposition of the original image into wavelet 
decomposed images using 2-D discrete wavelet transform. 
The 2-D wavelet transforms the image into four sub-images 
using special filters which are applied along the rows and then 
along the columns. This result in four sub-bands named as 
low-low, high-low, low-high and high-high. These sub-images 
are named as LL1, HL1, LH1, HH1 .The low-low sub-band 
may be further decomposed and divided into four sub-bands. 
These sub-images are obtained by using vertical and 
horizontal filters.  

As a result of this decomposition, the entire image energy 
gets squeezed into the LL1 sub-band. The HL1, LH1 and the 
HH1 sub-band contains only the directional information of the 
original image. The wavelet filters are so designed that the 
coefficients in the sub-bands are mostly not correlated with 
each other. Moreover, in case of an image most of the  

 

 

Figure 1.  Figure showing (a) The original woman image (b) The 2-D wavelet 

decomposed representation of the woman image .The bands are labeled as 

LL1,HL1,LH1,HH1 following from top-left to bottom-right. The LL1 sub-

band contains the most significant image coefficients, while HL1, LH1 and 
HH1 sub-bands contain only the directional information. 
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information exists in the low frequency components while the 
higher frequency components add only intricate details to the 
image. The filters used in present work for obtaining the 
discrete wavelet transform, are based on the Daubechies filters 
as in [2].After the first level of wavelet decomposition the LL1 
sub-band is again decomposed by using the same discrete 
wavelet transform into four another sub-band labeled as 
LL2,HL2,LH2 and HH2.This process is repeated a desired 
number of times until a finer resolved image is obtained. The 
present work is carried out by using 3 levels of wavelet 
decomposition. The third level of decomposition is obtained 
from the LL2 sub-band as shown in Figure 2. 

B. Tree Structure of Wavelet Coefficients 

In a hierarchical sub-band structure, each coefficient at a 
given scale is related to a set of coefficients at the next finer 
scale of similar orientation. However, the highest frequency 
sub-bands are exceptions, since there is no existence of a finer 
scale beyond them. The coefficients at the coarser scale are 
known as parent and the coefficients at the finer scale in 
similar orientation and same spatial location are known as 
children [9]-[11]. For a given parent, the set of all coefficients, 
at each finer scale having similar orientation and spatial 
locations is known as descendants. The wavelet 
decomposition of each band creates four sub-bands. Thus, 
each coefficient in the parent band is linked to four 
coefficients in the child sub-bands (except in LL3). This 
hierarchical structure is known as Quad-Tree. For a three level 
decomposed images as in Figure2, each coefficient in 
HL3,LH3 & HH3 is linked to four child coefficients in 
HL2,LH2 & HH2;which are further linked to sixteen 
coefficients in HL1,LH1 & HH1.This entire tree structure 
consisting of one coefficient in HL3,four coefficients in HL2 
and sixteen coefficients in HL1 , is known as a Quad-tree as 
shown in Figure 3.A zero-tree, may be defined against a 
threshold, as a quad-tree having all its children coefficients, 
including its parent coefficient, lesser than the threshold [6]. 
The zerotree concept arises from the fact that if a DWT 
coefficient at a coarse scale is insignificant, then normally all 
its higher frequency descendants are also likely to be 
insignificant. 

  A zerotree must therefore have a root structure, which is 
insignificant at a threshold. Since in a wavelet decomposed  

 

Figure 2.  Figure showing the three levels of wavelet decomposition. 

The third decomposition level is obtained by further decomposition of LL2 

sub-band. This decomposition clusters the maximum energy in the LL3 sub-
band. 

 

sub-image the maximum energy gets accumulated in the 

higher order sub-bands, so normally the children coefficients 

are smaller than the corresponding parent coefficient of the 

quad-tree, thereby creating a large number of zero-trees. This 

is illustrated by an example in Figure 4, as against a threshold 

of 32, here the circled coefficients represents a zero-tree.  

C. Encoding Algorithm 

The EZW algorithm is based on the following observations 
– When an image, having a low pass spectrum is wavelet 
decomposed, its energy in the LL sub-band increases with 
each level of decomposition and higher valued coefficients are 
more significant as compared to lower valued coefficients. 
The original algorithm begins encoding by decomposing the 
image to be encoded using the 2-D discrete wavelet 
transformation, a desired number of times. In the present work 
the image has been decomposed for three wavelet levels using 
filters based on the Daubechies filters as in [2].Next, the 
algorithm starts by calculating a threshold coefficient (in the 
power of 2), less than or equal to the maximum magnitude of 
the coefficients in the image. The algorithm codes using two 
passes. The first pass is known as the Dominant Pass.  

This dominant pass creates a list containing coefficients 
known as Subordinate list. Then, this Subordinate list 

 

  

Figure 3.  Figure showing a quad-tree obtained after three levels of wavelet 

decomposition. The arrow points from the parent to child to grand-child. 

Similar relationship exists for LH3 & HH3 sub-band also. However this 

relationship does not exist in LL3 sub-band. 

 

 

Figure 4.  Figure showing an example of zero-tree structure for two level 

wavelet decomposed image of 4x4(dimensions). The example assumes a 

threshold value of 32.The circled coefficients represents a zero-tree. The 
coefficient values of 39 and 40 in the LH1 and HH2 sub-bands respectively, 

prevent the corresponding quad-trees to turn into zero-trees.  
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undergoes through another pass known as Subordinate Pass 
[4]. 

The image coefficients are scanned in a prescribed order 
known as Morton scanning order as shown in Figure 5.The 
lower frequency sub-bands are scanned before the higher 
frequency sub-bands. Then the scanning continues to the next 
finer scale. This ensures that the all parent coefficients are 
scanned before the child coefficients. This process continues 
till the highest frequency sub-band is covered. This order is to 
be calculated, depending on the dimensions of the image. The 
method exploits the fact that a tree once identified to be a 
zero-tree is exempted from coding and is assigned a symbol 
once only , thereby all its descendents are prevented from 
being scanned again. The dominant pass works on the simple 
concept of significance. A coefficient becomes significant 
with respect to a given threshold if its magnitude is greater 
than or equal to the threshold. At the start, each coefficient is 
assumed to be insignificant and progressively, more and more 
significant coefficients are detected. In the dominant pass, the 
magnitude of the coefficient scanned is compared against the 
threshold. On comparison two conditions arise – either the 
scanned coefficient is significant with respect to the threshold 
or it is insignificant. If former condition is satisfied then again 
the coefficient checked for the sign coding. If this coefficient 
is positive it is assigned a symbol ‗p‘ otherwise it is assigned a 
symbol ‘n‘. Moreover, this coefficient is added to a 
subordinate list, which is to be next scanned in the sub-
ordinate pass. If the latter condition is satisfied then the entire 
tree-structure is considered .If the tree structure is a zero-tree 
, then it is assigned a symbol‗t‘, and is marked a zero-tree. 
Otherwise, a non zero-tree structure is coded as an isolated 
zero, and is assigned a symbol ‗z‘. The dominant pass thereby 
creates two sets – one containing the coefficients marked 
using the four symbols, known as significance map and the 
other containing a list of coefficients having a significant 
magnitude than the present threshold, known as subordinate 
list. This coding reduces the cost of encoding the using the 
similarity property . Though,2D-DWT essentially decorrelates 
the coefficients, however the occurrence of insignificant 
coefficients is not an independent event. Rather,it is easier to 
predict insignificance, than to predict significant details. 
Zerotree coding therefore exploits this redundancy among 
such insignificant coefficients.The following subordinate pass 

 

 

Figure 5.  Figure showing scanning order for a 8x8 image .The scanning 

begins in the order : LL3,HL3,LH3,HH3,HL2,LH2,HH2,HL1,LH1 & 
HH1.The scanning order continues in the direction of arrow known as Morton 

scanning. 

 

scans all the coefficients of the sub-ordinate list which has 
been created or concatenated during the present dominant 
passes. The coefficients in this sub-ordinate list are retained 
during each pass .After each pass the coefficients found 
significant during the previous dominant pass are added to this 
list. This pass is followed by a subordinate pass, during which 
the coefficients shortlisted during the dominant pass, are 
scanned again in order to add increased precision to image 
detail. This is done by splitting the region of uncertainty into 
two halves - one of them, being greater than half the present 
threshold and the other one being smaller. For the former half 
the symbol ‗1‘ is assigned while for the latter half the symbol 
‗0‘ is assigned [3]. The coefficients in the sub-ordinate list are 
sorted in such an order, as to enable the decoder to carry out 
the same sorting. The process alternates between both the 
passes and the present threshold is halved at each pass. In this 
manner all the coefficients are scanned and the process stops 
when the present threshold tends to become unity or at a stage, 
based on any desired image parameter (like the bit-rate or 
PSNR). The coefficients which were found significant during 
the present dominant pass are replaced by zero and the process 
is repeated. The stream of symbols generated from the 
dominant pass is then compressed using any entropy coding 
algorithms like the HUFFMAN coding or ARITHMETIC 
coding [5], [8], [12]. The present work uses Huffman coding. 
The symbols generated during the subordinate pass need not to 
be entropy coded. Actually, EZW encoding reorders the 
wavelet coefficients in such a way that they can be 
compressed very efficiently. Therefore the EZW encoder is 
always followed by an entropy encoder. Since the wavelet 
coefficients are reordered, in accordance of their importance in 
determining the image structure, so the decoding algorithm 
requires the scanning order in which the image was encoded.  

 

 

  Figure 6.  Figure showing flowchart for encoding coefficient during the 

dominant pass. This pass creates two output sets – one containing the four 

coded symbols and a sub-ordinate list set. 
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III. PROPOSED ALGORITHM 

A. Unit Cell 

The proposed algorithm relies heavily on the concept of a 
unit cell. A unit cell may be defined as the smallest possible 
square matrix generated from the wavelet decomposed image, 
having the same level of wavelet decomposition structure as 
the original image. For a three level wavelet decomposed sub-
image, the unit cell must be a square matrix, having the order 
of eight. A unit cell is composed of a single coefficient from 
the lowest frequency & the coarsest parent sub-band, followed 
by its quad-tree coefficients from the next higher frequency & 
finer child sub-band. This process continues till the finest 
scale sub-band has been reached.  

B. Encoding Algorithm 

Similar to the original algorithm, the proposed algorithm 
begins the encoding process, by the wavelet decomposition of 
the image, a desired number of times. The threshold is 
calculated for the entire image, once only and the same is used  

 

 
Figure 7.  Figure showing flowchart for encoding subordinate list coefficient 

during the subordinate pass. This pass creates a single set containing the 
symbols ‗1‘ and ‗0‘.  

 

Figure 8.  Figure showing formation of a unit cell from a wavelet decomposed 

sub-image. The arrow points from the sub-image to the unit cell. Similar 
relationship exists for elements in the LH, HH & HL sub-bands also. 

 
throughout the process. From the wavelet decomposed sub-
image unit cells are generated. These generated unit cells are 

then coded using the original EZW coding algorithm. These 
unit cells are then coded serially. For the embedded coding, 
the first dominant pass coefficients of all unit cells are 
combined followed by the next first sub-ordinate pass. The 
stream generated during dominant pass undergoes through a 
RUN-LENGTH coder. This run-length coding is necessary 
because the generated bit-stream has a high order of 
redundancy, which arises due to the fact, that a single 
threshold value is utilized for each unit-cell. This run-length 
coding is followed by entropy coding. Similar to the original 

algorithm the bit-stream generated during the sub-ordinate 
pass, needs not be run-length or entropy coded. This is 
followed by the next dominant and sub-ordinate pass and the 
process is repeated based on any desired image parameter. 
Once this parameter is obtained the encoder stops. The 
decoder must be aware of the order in which the unit cells 
were encoded, in order to be able to reconstruct the original 
image. 

IV. RESULTS 

The results have been obtained for different test-images 
having varying dimensions. The results were obtained on the 
same machine for three levels of wavelet decomposition [7]. 
For the original algorithm the entire image was scanned and 
the coding time was noted, while for the proposed algorithm, 
unit cells were composed, scanned and coded and again the 
coding time was noted. Results for the same have been shown 
in Table I. The results show a considerable improvement in 
the coding time using the proposed algorithm as compared to 
original algorithm. 

 

 

Figure 9.  Figure showing the flowchart for the proposed algorithm.
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TABLE I.  TABLE SHOWING CODING TIME FOR THE ORIGINAL AND PROPOSED ALGORITHM (SECONDS) 

Image Original algorithm  Proposed algorithm 

Dimensions 

(Pixels × Pixels) 

32 

× 

32 

64 

× 

64 

128 

× 

128 

256 

× 

256 

Dimensions 

(Pixels × Pixels) 

32 

× 

32 

64 

× 

64 

128 

× 

128 

256 

× 

256 

LENA  1.092 4.540 20.062 210.617  0.952 3.479 13.120 52.073 

BARBARA  1.108 4.477 19.407 213.425  0.983 3.572 13.915 54.632 

CAMRAMAN  1.139 4.618 20.639 200.960  0.998 3.588 13.463 53.867 

GOLDHILL  1.136 4.680 20.779 216.670  0.996 3.510 13.541 54.226 

PEPPERS  1.186 4.524 19.812 214.626  1.030 3.650 14.258 54.632 

TABLE II.  TABLE SHOWING IMPROVEMENT IN CODING TIME USING 

PROPOSED ALGORITHM OVER ORIGINAL ALGORITHM (PERCENT) 

Image Dimensions 

(Pixels × Pixels)  

32 

× 

32 

64 

× 

64 

128 

× 

128 

256 

× 

256 

LENA 12.821 23.370 34.603 75.276 

BARBARA 11.282 20.214 28.299 74.402 

CAMRAMAN 12.379 22.304 34.769 73.195 

GOLDHILL 12.324 25.000 34.833 74.973 

PEPPERS 13.153 19.319 28.034 74.545 
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 Figure 10.  Figure showing improvement in coding time using proposed 

algorithm over original algorithm. 
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