
UACEE International journal of Advances in Electronics Engineering 

7 

 

Parallel-Prefix Adder Architecture With Efficient Timing-Area Characteristic 

Abstract 

Two-operand binary addition is the most widely used 

arithmetic operation in modern datapath designs. To 

improve the efficiency of this operation, it is desirable 

to use an adder with good performance and area 

tradeoff characteristics. This paper presents an 

efficient carry-lookaheadadder architecture based on 

the parallel-prefix computation graph. In our 

proposed method, we define the notion of triple-carry-

operator, which computes the generate and propagate 

signals for a merged block which combines three 

adjacent blocks. We use this in conjunction with the 

classic approach of the carry-operator to compute the 

generate and propagate signals for a merged block 

combining two adjacent blocks. The timing-driven 

nature of the proposed design reduces the depth of 

the adder. In addition, we use a ripple-carry type of 

structure in the nontiming critical portion of the 

parallel-prefix computation network. These 

techniques help produce a good timing-area tradeoff 

characteristic. The experimental results indicate that 

our proposed adder is significantly faster than the 

popular Brent–Kung adder with some area overhead. 

On the other hand, the proposed adder also shows 

marginally faster performance than the fast Kogge–

Stone adder with significant time savings. 

Keywords – Arithmetic and logic structures, 

integrated timing circuits, logic design. 

 

I. INTRODUCTION 

 

Integrated Circuit (IC) technology has gone through a 

spectacular revolution in the last two decades. The 

number of transistors that can be integrated on a single 

die has been exponentially increasing with time 

following the Moore’s Law. Driven by increased density 

that can support complex applications, higher speed and 

reduced cost MOS transistor are scaled to nanometer 

ranges. Working with scaled devices to make it 

physically work on silicon VLSI design engineers face 

lot of challenges such as low power, reduced time to 

market etc. In order to meet these challenges the other 

alternative adopted is working on proven technology 

with parallel processing to increase the overall system 

performance and 

design reuse reduces the time to market. 

             The complexity and the performance 

requirement of the datapath operations implemented in 

systems-on-chips (SoCs) operations in modern 

integrated circuits, they tend to play a critical role in 

determining the performance of the design. Hence, 

developing efficient adder architecture (from the 

standpoint of timing, area, and power) is crucial to 

improving the efficiency of the design. Carry lookahead 

adders based on parallel prefix computation methods 

yield the fastest adders. There are several techniques 

proposed for the computation of the parallel prefix. In 

[1], Sklansky proposes one of the earliest tree-prefix 

algorithms for adders, where a tree structure is used to 

compute the intermediate signals. In the Brent–Kung 

(BK) approach [2], Brent and Kung design the prefix-

computation graph in an area-optimal way and the 

Kogge–Stone (KS) architecture [3] is optimized for 

timing. In [4], another prefix-computation architecture is 

proposed, where the fan-out of gates increases with the 

depth of the prefix computation tree. In [5], a hybrid 

adder architecture based on BK and KS is proposed. In 

[6], a zero-deficiency prefix adder with minimal depth 

was introduced. In [7] and [8], the authors present new 

algorithms to construct a class of depth-size optimal 

parallel prefix circuits. In [9], a parallel prefix adder 

synthesis was introduced, which performs two-step area 

minimization under given timing constraints. In [10], 

Choi and Swartzlander present a one-shot batch process 

that generates a wide range of designs for a group of 

parallel prefix adders. In [11], Dimitrakopoulos and 

Nikolos save one-logic level of implementation leading 

to faster performance of the parallel-prefix addition. In 

[12], a performance evaluation analysis was performed 

between flagged prefix adders with the other well-known 

prefix adders. In [13], Liu et al. propose an algorithmic 

approach to generate an irregular parallel-prefix adder. 

In [14], Lin et al. use domino logic to generate efficient 

parallel-prefix architecture. Our approach is different 

from all the other approaches mentioned earlier, because 

we use combination of two types of merged blocks. 

               We propose a new design of an efficient 

addition block based on the parallel-prefix computation 

technique. In our approach, we use the notion of 

computing the generate and propagate signals for a 

merged block combining three adjacent blocks. We use 

this in conjunction with the classic approach of 

computing generate and propagate signals for a merged 

block combining two adjacent blocks. Our design is 

timing driven in the timing critical path. At the same 
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time, we optimize for area in the nontiming critical path. 

This is another novel aspect of our proposed approach. 

                 Prefix adders are based on parallel prefix 

circuit theory which provides a solid theoretical basis for 

wide range of design trade -offs between delay, area and 

wiring complexity. This dissertation first presents an 

algorithm for prefix computation under the condition of 

non -uniform input signal arrival. To obtain the 

algorithm, the structure of prefix circuits is analyzed and 

a generalized circuit structure that is composed of two 

parts, a full -product generation tree and sub -product 

generation trees, is proposed. For the full - product 

generation tree, a delay optimized design algorithm is 

proposed and its optimality is shown. The proposed 

algorithm is easy of implement and fast in run -time due 

to its greedy strategy and it ensures the minimum depth 

prefix circuit design with the Ladner Fischer strategy. 

This dissertation also presents a one -shot batch process 

that generates a wide range of designs for a group of 

parallel prefix adders. The prefix adders are represented 

by two-dimensional matrixes and two vectors. This 

matrix representation makes it possible to compose two 

functions for gate sizing which calculate the delay and 

the total transistor width of the carry propagation graph 

of adders. After gate sizing, the critical path net list of 

the 

carry propagation graph is generated from the matrix 

representation for spice delay calculation. The process is 

illustrated by generating sets of delay and total transistor 

width pairs for 32 -bit and 64 -bit cases. 

For each bit (i = 0 to (n-1)) 

Si = ai ⊕bi ⊕ Carryi 

Carryi+1 = (ai ∩ bi )U(bi ∩ Carryi) U(Carryi ∩ ai ) 

 

For each bit i of the adder, Generate (Gi) indicates 

whether a carry is generated from that bit. 

 

Gi = ai ∩ bi 

 

For each bit i of the adder, Propagate (Pi) indicates 

whether a carry is propagated through that bit. 

 

Pi = ai ⊕ bi 

 

Generate and Propagate concept is extendable to blocks 

comprising multiple bits. 

Fig: Flow chart 

II Approach: 

 

Use 2-input XOR and AND gates to compute Gi and Pi 

values. 

Use triple-carry operator in parallel-prefix tree to 

compute Carryi values. 

Use Pi and Carryi to compute final Sumi values. 

                      In our approach, we use the traditional way 

of computing the Generate (Gi) and Propagate 

(Pi) for each bit. 

Gi = ai ∩ bi 

Pi = ai � bi 

If Gi is equal to 1, that indicates a Carryi+1 signal equal 

to 1’b1 (logic-1) is generated from the 

ith bit. If Pi is equal to 1, that indicates the Carryi gets 

fed to the Carryi+1 signal. 

 

a)Single Carry Operation:- A carry/majority circuit, 

comprising a plurality of differentialtransistor pairs 

coupled in parallel and forming a pair of output nodes, 

with a single parallel gated level. Current is steered 

through a leg of the transistor pair having a higher input 

voltage. A carry circuit is typically used in arithmetic 

units, such as adder or subtractors, to process a carry 

operation in order to transfer a carry signal to the 

following carry operation. The carry circuits can be 

arranged to form other devices such as accumulators 

which can be further expanded to such devices as direct 

digital synthesizers (DDS). 

                In a floating point addition or subtraction 

procedure two shift operations of the operand fraction 

may be required. The first shift operation, based on the 

difference between the operand exponent arguments, 

involves aligning one of the operand arguments so that 

the addition or subtraction procedure between the 

operand fractions can be performed. In order to complete 

the associated computations correctly, it is necessary to  
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Fig: Single carry operator 

 

know if any of the fraction positions removed from the 

fraction by the shift operation include non-zero signals. 

      If two blocks (comprising one or more bits) have the 

GP value-pairs as (Gleft, Pleft) and (Gright, Pright), then 

the combined block has the GP values as follows: 

Gleft, right = Gleft (Pleft ∩ Gright) 

Pleft, right = Pleft ∩ Pright 

This operation is performed by a carry-operator or o-

operator. 

 

b)Tripple Carry Operation:- Triple-carry-operator, 

which computes the generate and 

propagate signals for a merged block which combines 

three adjacent blocks. We use this in conjunction with 

the classic approach of the carry-operator to compute the 

generate and propagate signals for a merged block 

combining two adjacent blocks. The timing-driven 

nature of the proposed design reduces the depth of the 

adder. 

If three blocks (or bits) have the GP value-pairs 

as (Gleft, Pleft), (Gmid, Pmid) and (Gright, Pright), then 

the combined block generates a Carry only if: 

• Left block generates a Carry OR 

• Middle block generates a Carry and Left block 

propagates that OR 

• Right block generates a Carry and both Middle and 

Left blocks propagate that Carry. 

The combined block propagates only if: 

• Each of the three blocks propagates the input Carry. 

• If three blocks (consisting of one or more bits) have the 

GP value-pairs as (Gleft, Pleft), (Gmid, Pmid) and 

(Gright, Pright), then the combined block has the GP 

values as follows: 

Gleft, right = Gleft (Pleft ∩ Gmid) (Pleft ∩ Pmid ∩ 

Gright) 

Pleft, right = Pleft ∩ Pmid ∩ Pright . 

• This operation is performed by a triple-carry operator 

or o3-operator. 

 

Fig : Tripple carry operator 

 

Typically, delay of a triple-carry operator is about 110% 

to 130% of the delay of a traditional carry-operator. Area 

of a triple-carry operator is about 150% to 180% of the 

area of a traditional carry-operator. 

 

c)Advantages of Triple Carry Operator 

• Triple carry operator to avoid the problem of high fan-

out nets. To maintain this strictlimit on fanouts. 

• Triple carry operator reduces the depth along that path 

(at the expense of additional 

hardware) and improves the performance of parallel 

prefix adder. 

• Use triple-carry operator in the parallel-prefix 

computation tree to reduce delay of the 

critical-path this delay characteristic makes triple-carry 

operator an efficient choice in 

the parallel prefix network. 
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• We only use “Triple carry” operator in the timing 

critical portion of the parallel prefix tree. 

Fig: Example of 4-bit 
Fig: Proposed parallel prefix network (for input width of 16 

bits). 

 

 III. EXPERIMENTAL RESULTS 

To collect different data points regarding the quality of 

results for the adder blocks, we used the following 

variations. 

• Adder blocks of different input widths: 

We have used adders having different input widths. In 

Table I, we have shown the final results for adders 

having input bitwidths (n) equal to 16, 24, 32, 48, and 64 

bits. We refer to these blocks as Adder-16, Adder-24, 

Adder-32, Adder-48, and Adder-64, respectively. 

• Different technologies and libraries: 

two commercial libraries (L1 and L2) for 0.13 µ;  
two commercial libraries (L3 and L4) for 0.09 µ ; 
• Different input arrival time constraints: 

  We used the following input arrival time constraints. 

Different input bits of signals a and b arrive at different 

times. The motivation for this is as follows. There exists 

an adder sub-block inside every arithmetic sum-of  

product (SOP) and multiplier block. Due to the wide 

usage of SOP and multipliers in the modern digital 

designs, the performance of this adder block is crucial to 

determine the performance of the design. Thus, we 

model this timing constraint [15]. Since an adder is an 

internal part of a SOP and multiplier block, the arrival 

times of different inputs of the adder block are not 

identical. Hence, we cannot directly write timing 

constraints to control the arrival times for the inputs of 

the adder. As a result, we specified the arrival time 

constraints for the inputs of the SOP and the multiplier. 

Once the input arrival times are specified for SOPs and 

multipliers, the synthesis tool propagates the arrival 

times through each sub-block inside the SOP and 

multiplier. We then report the actual arrival-time 

numbers to the input of the adder sub-block inside SOP 

and multiplier. In this manner, we collected significant 

amount of data on the arrival- times of the adder inputs. 

From this arrival-time data, we derived the following 

equation. We believe that this equation closely 

represents the actual arrival timing-constraint for the 

adder sub-blocks inside real-life SOPs and multiplier 

blocks. We refer to this category of timing constraints as 

Ar(lte)ar . Let us denote Arr(ai) as the arrival time of the 

signal ai. Assuming that k is a constant and δ is the delay 

of the fastest two-input AND gate in the technology 

library, the following is the Arr(late) timing constraint (n 

is the width of the adder inputs): 

 

(Arr ai) = δk ; 0≤ i ≤[3n/5] 

(Arr ai) = [3n/5]kδ - (i- [3n/5]) kδ; 

 [(3n/5)] < i < n 

Arr(bi) =δk ; 0 ≤i ≤[3n/5] 

Arr(bi) =[3n/5]kδ - (i – [3n/5]) kδ;  

[(3n/5)] <:i < n 

 

All input bits of the signals a and b arrive at the 

same time.We refer to this constraint as Asmarer)( . If k 

is a constant number, then the Arr(same) constraint can 

be represented as 

 

Arr(ai) =k; 0≤i <n 

Arr(bi) =k; 0≤i <n: 

 

We have implemented the BK adder [2], the KS 

adder [3], and our proposed adder for different operand 

widths. We optimized each of the architectures by using 

a best-in-class commercially available datapath synthesis 

tool (run on a workstation with dual 2.2-GHz processors, 

4 GB memory, and RedHat 7.1 Linux). The synthesis 

tool performed the operations like technology-

independent optimizations, constant propagation, 

redundancy removal, technology mapping, timingdriven 

optimization, area-driven optimization, incremental 

optimization, etc. Due to the licensing agreements, we 

are unable to mention the name of the commercial tool 

we used. In Table I, we present the post-synthesis worst-

case delay and the total area results for the adder block 

for each of the three architectures (as reported by the 

synthesis tool). To compute worst-case delay, the static 

timing computation engine inside the datapath synthesis 

tool was used. To compute total area, the technology 

library cell information was used. 
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       In Table I, we report 25 sets of data points for 

adders of different widths, timing constraints, and 

technology libraries. On an average, our proposed 

approach results in a 23.96% faster adder (column 7 of 

Table I), with 9.39% area penalty (colum 12). When 

comparing with the KS adder, then our proposed 

approach results in a marginally (0.77%) faster 

implementation (column 8), with a significant (29.71%) 

area improvement (column 13). Note that like the BK 

and KS approaches, our approach generates the same 

structure irrespective of the input arrival timing 

constraints. Then, depending on the arrival timing 

constraint, the technology mapping algorithms will 

choose different technology cells to yield different final 

worst delay (and area) numbers. To verify the correlation 

of post-synthesis experimental data with the post place-

and-route data, we performed placement and routing on 

one Adder-32 and one Adder-64 design. For these two 

testcases, the average post-routing worst delay of BK 

adder, KS adder, and our proposed adder are (normalized 

to the worst delay of the BK adder): 1.0, 0.78, and 0.76, 

respectively. Similarly, the post-routing total area of the 

BK adder, KS adder, and our proposed adder are 

(normalized to the area of the BK adder): 1.0, 1.34, and 

1.07, respectively. The individual results for the Adder-

32 and Adder-64 designs correlate closely with the post-

synthesis numbers reported in Table I. These results after 

place and route confirm our conclusion about the 

efficient timing area characteristic of our approach. For 

the reference purposes, we implemented the ripple adder 

and measured its delay and area numbers across all our 

adder designs, libraries, and timing constraints. The 

experimental data showed that, on an average, our 

proposed adder is about 62% faster and 239% larger than 

the ripple adder. 

We also performed some additional experimentation by 

using different values of δ in the equation for Ar(late) r . 

The modified values of δ we tried are equal to: 1) a two-

input XOR gate delay from the technology library; 2) a 

two-input OR gate delay; 3) an inverter gate delay; 4) 1 

(constant number). In each of these cases, the resulting 

delay and area numbers of our adders exhibit 

substantially same timing area characteristics as reported 

in Table I. 

 

IV. CONCLUSION 

we have presented a hybrid approach of 

implementing an adder block based on the fast parallel 

prefix architecture. The proposed adder exhibits very 

efficient timing area tradeoff characteristics. Our hybrid 

architecture is based on the triple-carry operator (“o3”) 

and the classical carry-operator (“o”). It works 

seamlessly with adder blocks of different widths and 

across different technology domains (0.13 _, 0.09 _, 

etc.). The experimental results indicate that our proposed 

adder is significantly faster than the popular BK adder 

with some area overhead. On the other hand, the 

proposed adder also shows marginally faster 
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performance than the fast KS adder with significant time 

savings. 
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