
UACEE International journal of Advances in Electronics Engineering

7

Parallel-Prefix Adder Architecture With Efficient Timing-Area Characteristic

Abstract

Two-operand binary addition is the most widely used

arithmetic operation in modern datapath designs. To

improve the efficiency of this operation, it is desirable

to use an adder with good performance and area

tradeoff characteristics. This paper presents an

efficient carry-lookaheadadder architecture based on

the parallel-prefix computation graph. In our

proposed method, we define the notion of triple-carry-

operator, which computes the generate and propagate

signals for a merged block which combines three

adjacent blocks. We use this in conjunction with the

classic approach of the carry-operator to compute the

generate and propagate signals for a merged block

combining two adjacent blocks. The timing-driven

nature of the proposed design reduces the depth of

the adder. In addition, we use a ripple-carry type of

structure in the nontiming critical portion of the

parallel-prefix computation network. These

techniques help produce a good timing-area tradeoff

characteristic. The experimental results indicate that

our proposed adder is significantly faster than the

popular Brent–Kung adder with some area overhead.

On the other hand, the proposed adder also shows

marginally faster performance than the fast Kogge–

Stone adder with significant time savings.

Keywords – Arithmetic and logic structures,

integrated timing circuits, logic design.

I. INTRODUCTION

Integrated Circuit (IC) technology has gone through a

spectacular revolution in the last two decades. The

number of transistors that can be integrated on a single

die has been exponentially increasing with time

following the Moore’s Law. Driven by increased density

that can support complex applications, higher speed and

reduced cost MOS transistor are scaled to nanometer

ranges. Working with scaled devices to make it

physically work on silicon VLSI design engineers face

lot of challenges such as low power, reduced time to

market etc. In order to meet these challenges the other

alternative adopted is working on proven technology

with parallel processing to increase the overall system

performance and

design reuse reduces the time to market.

 The complexity and the performance

requirement of the datapath operations implemented in

systems-on-chips (SoCs) operations in modern

integrated circuits, they tend to play a critical role in

determining the performance of the design. Hence,

developing efficient adder architecture (from the

standpoint of timing, area, and power) is crucial to

improving the efficiency of the design. Carry lookahead

adders based on parallel prefix computation methods

yield the fastest adders. There are several techniques

proposed for the computation of the parallel prefix. In

[1], Sklansky proposes one of the earliest tree-prefix

algorithms for adders, where a tree structure is used to

compute the intermediate signals. In the Brent–Kung

(BK) approach [2], Brent and Kung design the prefix-

computation graph in an area-optimal way and the

Kogge–Stone (KS) architecture [3] is optimized for

timing. In [4], another prefix-computation architecture is

proposed, where the fan-out of gates increases with the

depth of the prefix computation tree. In [5], a hybrid

adder architecture based on BK and KS is proposed. In

[6], a zero-deficiency prefix adder with minimal depth

was introduced. In [7] and [8], the authors present new

algorithms to construct a class of depth-size optimal

parallel prefix circuits. In [9], a parallel prefix adder

synthesis was introduced, which performs two-step area

minimization under given timing constraints. In [10],

Choi and Swartzlander present a one-shot batch process

that generates a wide range of designs for a group of

parallel prefix adders. In [11], Dimitrakopoulos and

Nikolos save one-logic level of implementation leading

to faster performance of the parallel-prefix addition. In

[12], a performance evaluation analysis was performed

between flagged prefix adders with the other well-known

prefix adders. In [13], Liu et al. propose an algorithmic

approach to generate an irregular parallel-prefix adder.

In [14], Lin et al. use domino logic to generate efficient

parallel-prefix architecture. Our approach is different

from all the other approaches mentioned earlier, because

we use combination of two types of merged blocks.

 We propose a new design of an efficient

addition block based on the parallel-prefix computation

technique. In our approach, we use the notion of

computing the generate and propagate signals for a

merged block combining three adjacent blocks. We use

this in conjunction with the classic approach of

computing generate and propagate signals for a merged

block combining two adjacent blocks. Our design is

timing driven in the timing critical path. At the same

G.Jyoshna M.Tech

JNT University

Anantapur
Email: jyoshnagirika_2006@yahoo.co.in

P.Murali Krishna M.Tech

JNT University

Anantapur
Email:murali.43@gmail.com

 B.Doss (Ph.D)

Lecturer

JNT University

Anantapur

Vol:1 Issue:1 ISSN 2278 - 215X

UACEE International journal of Advances in Electronics Engineering

8

time, we optimize for area in the nontiming critical path.

This is another novel aspect of our proposed approach.

 Prefix adders are based on parallel prefix

circuit theory which provides a solid theoretical basis for

wide range of design trade -offs between delay, area and

wiring complexity. This dissertation first presents an

algorithm for prefix computation under the condition of

non -uniform input signal arrival. To obtain the

algorithm, the structure of prefix circuits is analyzed and

a generalized circuit structure that is composed of two

parts, a full -product generation tree and sub -product

generation trees, is proposed. For the full - product

generation tree, a delay optimized design algorithm is

proposed and its optimality is shown. The proposed

algorithm is easy of implement and fast in run -time due

to its greedy strategy and it ensures the minimum depth

prefix circuit design with the Ladner Fischer strategy.

This dissertation also presents a one -shot batch process

that generates a wide range of designs for a group of

parallel prefix adders. The prefix adders are represented

by two-dimensional matrixes and two vectors. This

matrix representation makes it possible to compose two

functions for gate sizing which calculate the delay and

the total transistor width of the carry propagation graph

of adders. After gate sizing, the critical path net list of

the

carry propagation graph is generated from the matrix

representation for spice delay calculation. The process is

illustrated by generating sets of delay and total transistor

width pairs for 32 -bit and 64 -bit cases.

For each bit (i = 0 to (n-1))

Si = ai ⊕bi ⊕ Carryi

Carryi+1 = (ai ∩ bi)U(bi ∩ Carryi) U(Carryi ∩ ai)

For each bit i of the adder, Generate (Gi) indicates

whether a carry is generated from that bit.

Gi = ai ∩ bi

For each bit i of the adder, Propagate (Pi) indicates

whether a carry is propagated through that bit.

Pi = ai ⊕ bi

Generate and Propagate concept is extendable to blocks

comprising multiple bits.

Fig: Flow chart

II Approach:

Use 2-input XOR and AND gates to compute Gi and Pi

values.

Use triple-carry operator in parallel-prefix tree to

compute Carryi values.

Use Pi and Carryi to compute final Sumi values.

 In our approach, we use the traditional way

of computing the Generate (Gi) and Propagate

(Pi) for each bit.

Gi = ai ∩ bi

Pi = ai � bi

If Gi is equal to 1, that indicates a Carryi+1 signal equal

to 1’b1 (logic-1) is generated from the

ith bit. If Pi is equal to 1, that indicates the Carryi gets

fed to the Carryi+1 signal.

a)Single Carry Operation:- A carry/majority circuit,

comprising a plurality of differentialtransistor pairs

coupled in parallel and forming a pair of output nodes,

with a single parallel gated level. Current is steered

through a leg of the transistor pair having a higher input

voltage. A carry circuit is typically used in arithmetic

units, such as adder or subtractors, to process a carry

operation in order to transfer a carry signal to the

following carry operation. The carry circuits can be

arranged to form other devices such as accumulators

which can be further expanded to such devices as direct

digital synthesizers (DDS).

 In a floating point addition or subtraction

procedure two shift operations of the operand fraction

may be required. The first shift operation, based on the

difference between the operand exponent arguments,

involves aligning one of the operand arguments so that

the addition or subtraction procedure between the

operand fractions can be performed. In order to complete

the associated computations correctly, it is necessary to

Vol:1 Issue:1 ISSN 2278 - 215X

UACEE International journal of Advances in Electronics Engineering

9

Fig: Single carry operator

know if any of the fraction positions removed from the

fraction by the shift operation include non-zero signals.

 If two blocks (comprising one or more bits) have the

GP value-pairs as (Gleft, Pleft) and (Gright, Pright), then

the combined block has the GP values as follows:

Gleft, right = Gleft (Pleft ∩ Gright)

Pleft, right = Pleft ∩ Pright

This operation is performed by a carry-operator or o-

operator.

b)Tripple Carry Operation:- Triple-carry-operator,

which computes the generate and

propagate signals for a merged block which combines

three adjacent blocks. We use this in conjunction with

the classic approach of the carry-operator to compute the

generate and propagate signals for a merged block

combining two adjacent blocks. The timing-driven

nature of the proposed design reduces the depth of the

adder.

If three blocks (or bits) have the GP value-pairs

as (Gleft, Pleft), (Gmid, Pmid) and (Gright, Pright), then

the combined block generates a Carry only if:

• Left block generates a Carry OR

• Middle block generates a Carry and Left block

propagates that OR

• Right block generates a Carry and both Middle and

Left blocks propagate that Carry.

The combined block propagates only if:

• Each of the three blocks propagates the input Carry.

• If three blocks (consisting of one or more bits) have the

GP value-pairs as (Gleft, Pleft), (Gmid, Pmid) and

(Gright, Pright), then the combined block has the GP

values as follows:

Gleft, right = Gleft (Pleft ∩ Gmid) (Pleft ∩ Pmid ∩

Gright)

Pleft, right = Pleft ∩ Pmid ∩ Pright .

• This operation is performed by a triple-carry operator

or o3-operator.

Fig : Tripple carry operator

Typically, delay of a triple-carry operator is about 110%

to 130% of the delay of a traditional carry-operator. Area

of a triple-carry operator is about 150% to 180% of the

area of a traditional carry-operator.

c)Advantages of Triple Carry Operator

• Triple carry operator to avoid the problem of high fan-

out nets. To maintain this strictlimit on fanouts.

• Triple carry operator reduces the depth along that path

(at the expense of additional

hardware) and improves the performance of parallel

prefix adder.

• Use triple-carry operator in the parallel-prefix

computation tree to reduce delay of the

critical-path this delay characteristic makes triple-carry

operator an efficient choice in

the parallel prefix network.

Vol:1 Issue:1 ISSN 2278 - 215X

UACEE International journal of Advances in Electronics Engineering

10

• We only use “Triple carry” operator in the timing

critical portion of the parallel prefix tree.

Fig: Example of 4-bit
Fig: Proposed parallel prefix network (for input width of 16

bits).

 III. EXPERIMENTAL RESULTS

To collect different data points regarding the quality of

results for the adder blocks, we used the following

variations.

• Adder blocks of different input widths:

We have used adders having different input widths. In

Table I, we have shown the final results for adders

having input bitwidths (n) equal to 16, 24, 32, 48, and 64

bits. We refer to these blocks as Adder-16, Adder-24,

Adder-32, Adder-48, and Adder-64, respectively.

• Different technologies and libraries:

two commercial libraries (L1 and L2) for 0.13 µ;
two commercial libraries (L3 and L4) for 0.09 µ ;
• Different input arrival time constraints:

 We used the following input arrival time constraints.

Different input bits of signals a and b arrive at different

times. The motivation for this is as follows. There exists

an adder sub-block inside every arithmetic sum-of

product (SOP) and multiplier block. Due to the wide

usage of SOP and multipliers in the modern digital

designs, the performance of this adder block is crucial to

determine the performance of the design. Thus, we

model this timing constraint [15]. Since an adder is an

internal part of a SOP and multiplier block, the arrival

times of different inputs of the adder block are not

identical. Hence, we cannot directly write timing

constraints to control the arrival times for the inputs of

the adder. As a result, we specified the arrival time

constraints for the inputs of the SOP and the multiplier.

Once the input arrival times are specified for SOPs and

multipliers, the synthesis tool propagates the arrival

times through each sub-block inside the SOP and

multiplier. We then report the actual arrival-time

numbers to the input of the adder sub-block inside SOP

and multiplier. In this manner, we collected significant

amount of data on the arrival- times of the adder inputs.

From this arrival-time data, we derived the following

equation. We believe that this equation closely

represents the actual arrival timing-constraint for the

adder sub-blocks inside real-life SOPs and multiplier

blocks. We refer to this category of timing constraints as

Ar(lte)ar . Let us denote Arr(ai) as the arrival time of the

signal ai. Assuming that k is a constant and δ is the delay

of the fastest two-input AND gate in the technology

library, the following is the Arr(late) timing constraint (n

is the width of the adder inputs):

(Arr ai) = δk ; 0≤ i ≤[3n/5]

(Arr ai) = [3n/5]kδ - (i- [3n/5]) kδ;

 [(3n/5)] < i < n

Arr(bi) =δk ; 0 ≤i ≤[3n/5]

Arr(bi) =[3n/5]kδ - (i – [3n/5]) kδ;

[(3n/5)] <:i < n

All input bits of the signals a and b arrive at the

same time.We refer to this constraint as Asmarer)(. If k

is a constant number, then the Arr(same) constraint can

be represented as

Arr(ai) =k; 0≤i <n

Arr(bi) =k; 0≤i <n:

We have implemented the BK adder [2], the KS

adder [3], and our proposed adder for different operand

widths. We optimized each of the architectures by using

a best-in-class commercially available datapath synthesis

tool (run on a workstation with dual 2.2-GHz processors,

4 GB memory, and RedHat 7.1 Linux). The synthesis

tool performed the operations like technology-

independent optimizations, constant propagation,

redundancy removal, technology mapping, timingdriven

optimization, area-driven optimization, incremental

optimization, etc. Due to the licensing agreements, we

are unable to mention the name of the commercial tool

we used. In Table I, we present the post-synthesis worst-

case delay and the total area results for the adder block

for each of the three architectures (as reported by the

synthesis tool). To compute worst-case delay, the static

timing computation engine inside the datapath synthesis

tool was used. To compute total area, the technology

library cell information was used.

Vol:1 Issue:1 ISSN 2278 - 215X

UACEE International journal of Advances in Electronics Engineering

11

 In Table I, we report 25 sets of data points for

adders of different widths, timing constraints, and

technology libraries. On an average, our proposed

approach results in a 23.96% faster adder (column 7 of

Table I), with 9.39% area penalty (colum 12). When

comparing with the KS adder, then our proposed

approach results in a marginally (0.77%) faster

implementation (column 8), with a significant (29.71%)

area improvement (column 13). Note that like the BK

and KS approaches, our approach generates the same

structure irrespective of the input arrival timing

constraints. Then, depending on the arrival timing

constraint, the technology mapping algorithms will

choose different technology cells to yield different final

worst delay (and area) numbers. To verify the correlation

of post-synthesis experimental data with the post place-

and-route data, we performed placement and routing on

one Adder-32 and one Adder-64 design. For these two

testcases, the average post-routing worst delay of BK

adder, KS adder, and our proposed adder are (normalized

to the worst delay of the BK adder): 1.0, 0.78, and 0.76,

respectively. Similarly, the post-routing total area of the

BK adder, KS adder, and our proposed adder are

(normalized to the area of the BK adder): 1.0, 1.34, and

1.07, respectively. The individual results for the Adder-

32 and Adder-64 designs correlate closely with the post-

synthesis numbers reported in Table I. These results after

place and route confirm our conclusion about the

efficient timing area characteristic of our approach. For

the reference purposes, we implemented the ripple adder

and measured its delay and area numbers across all our

adder designs, libraries, and timing constraints. The

experimental data showed that, on an average, our

proposed adder is about 62% faster and 239% larger than

the ripple adder.

We also performed some additional experimentation by

using different values of δ in the equation for Ar(late) r .

The modified values of δ we tried are equal to: 1) a two-

input XOR gate delay from the technology library; 2) a

two-input OR gate delay; 3) an inverter gate delay; 4) 1

(constant number). In each of these cases, the resulting

delay and area numbers of our adders exhibit

substantially same timing area characteristics as reported

in Table I.

IV. CONCLUSION

we have presented a hybrid approach of

implementing an adder block based on the fast parallel

prefix architecture. The proposed adder exhibits very

efficient timing area tradeoff characteristics. Our hybrid

architecture is based on the triple-carry operator (“o3”)

and the classical carry-operator (“o”). It works

seamlessly with adder blocks of different widths and

across different technology domains (0.13 _, 0.09 _,

etc.). The experimental results indicate that our proposed

adder is significantly faster than the popular BK adder

with some area overhead. On the other hand, the

proposed adder also shows marginally faster

Vol:1 Issue:1 ISSN 2278 - 215X

UACEE International journal of Advances in Electronics Engineering

12

performance than the fast KS adder with significant time

savings.

REFERENCES

[1] J. Sklansky, “Conditional sum addition logic,” IRE

Trans. Electron. Comput., vol. EC-9, no. 6, pp. 226–231,

1960.

[2] R. P. Brent and H. T.Kung, “Aregular layout for

parallel adders,” IEEE Trans. Comput., vol. 31, no. 3,

pp. 260–264, Mar. 1982.

[3] P. M. Kogge and H. S. Stone, “A parallel algorithm

for the efficient solution of a general class of recurrence

equations,” IEEE Trans. Comput., vol. C-22, no. 8, pp.

783–791, Aug. 1973.

[4] R. E. Ladner and M. J. Fischer, “Parallel prefix

computation,” J. ACM, vol. 27, no. 4, pp. 831–838,

1980.

[5] T. Han and D. A. Carlson, “Fast area-efficient VLSI

adders,” in Proc.8th Symp. Comput. Arithmetic, 1987,

pp. 49–56.

[6] H. Zhu, C. K. Cheng, and R. Graham, “On the

construction of zerodeficiency parallel prefix circuits

with minimum depth,” ACM Trans. Des. Autom.

Electron. Syst., vol. 11, no. 2, pp. 387–409, 2006.

[7] Y. C. Lin and C. C. Shih, “A new class of depth-size

optimal parallel prefix circuits,” J. Supercomput., vol.

14, no. 1, pp. 39–52, 1999.

IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3,

MARCH 2008 331

[8] Y. C. Lin and C. Y. Su, “Faster optimal parallel

prefix circuits: New algorithmic construction,” J.

Parallel Distrib. Comput., vol. 65, no. 12, pp. 1585–

1595, 2005.

[9] T. Matsunaga and Y. Matsunaga, “Area minimization

algorithm for parallel prefix adders under bitwise delay

constraints,” in Proc. 17
th

 Great Lakes Symp. VLSI,

2007, pp. 435–440.

[10] Y. Choi and E. E. Swartzlander, Jr, “Parallel prefix

adder design with matrix representation,” in Proc. 17th

IEEE Symp. Comput. Arithmetic (ARITH), 2005, pp. 90–

98.

[11] G. Dimitrakopoulos and D. Nikolos, “High-speed

parallel-prefix VLSI ling adders,” IEEE Trans. Comput.,

vol. 54, no. 2, pp. 225–231, Feb.2005.

[12] V. Dave, E. Oruklu, and J. Saniie, “Performance

evaluation of flagged prefix adders for constant

addition,” in Proc. IEEE Int. Conf. Electro/ inf. Technol.,

2006, pp. 415–420.

[13] J. Liu, S. Zhou, H. Zhu, and C. K. Cheng, “An

algorithmic approach for generic parallel adders,” in

Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2003,

pp. 734–740.

[14] R. Lin, K. Nakano, S. Olariu, and A. Y. Zomaya,

“An efficient parallel prefix sums architecture with

domino logic,” IEEE Trans. Parallel Distrib.

Syst., vol. 14, no. 9, pp. 922–931, Sep. 2003.

[15] P. F. Stelling and V. G. Oklobdzija, “Design

strategies for optimal hybrid final adders in a parallel

multiplier,” J. VLSI Signal Process., vol. 14, no. 3, pp.

321–331, 1996.

Vol:1 Issue:1 ISSN 2278 - 215X

