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Abstract—This paper addresses solution to the problem of 

reaching an agreement (consensus) in a distributed system. The 

aim is to maximise fault tolerance as well as reduce the message 

exchange overhead. The proposed algorithm uses as few as two 

rounds of message exchange. This better efficiency is achieved 

through early disposal of faulty processes. The network 

partitioning scheme proposed later further reduces message 

exchange overhead and thus network traffic 

Keywords— Consensus, Byzantine Agreement, Reaching 

Agreement, Early Stopping, Decision Vector 

I. INTRODUCTION 

In a distributed system it is often required to reach a 

common agreement (consensus) among the processes[6].The 

participating process must co-operate among themselves for 

such an agreement. This operation becomes all the more 

difficult when the behaviour of the processes become 

unpredictable. 

A number of solutions[1],[2] has been reported for reaching 

this agreement with the target maximising fault tolerance and 

reducing message exchange. However optimality is yet to be 

achieved considering both these clauses. The Quick consensus 

algorithm described in [11] addresses a viable solution to this 

problem but with some assumptions. The proposed scheme is 

set to achieve better efficiency through early disposal of faulty 

processes in exactly two rounds of message exchange. The 

algorithm ensures minimum message exchange considering all 

kinds of faults[4] [6].The algorithm applies a upper bound on 

the number of faulty process as n≥2t where n is the number of 

processes and t is the number of faulty processes. 

 

II. PREVIOUS WORK 

The Byzantine Agreement Problem 
In Byzantine agreement, one process (designated as 

initiator) broadcasts a value that is to be agreed upon. All 

processes then communicate with each other through message 

exchanges. All non-faulty processes finally agree on the same 

value. If the initiator is non-faulty then all the non faulty 

processes agree on the value of the initiator. 

 

 

 

 

 

 

 

 

 

The algorithm proposed in [1] solves the Byzantine 

agreement problem for n processes but with the upper bound 

of n ≥ 3t+1 where t is the maximum number of tolerable faulty 

processes .It is found in [1] and [2] that any conventational 

Byzantine agreement algorithm would require t+1 rounds of 

message exchange in the worst case. 

The Synchronous Mortal Byzantine Tolerant   Consensus 

(SMBTC) approach [3] improves fault tolerance by n≥2t but 

with the assumption that the faulty processes must crash 

within a finite time. A system of 5 processes(P1,P2,...,P5) out 

of which P3 and P5 are faulty has been cited as an example. 

Processor P1 initiates the procedure by sending its decision 

value to all other processes. Then it passes through certain 

phases with each phase consisting of two rounds. 

In the first round of a phase, each process sends its 

proposed and decision values to all. If any non-faulty process 

(P2) identifies that the message from a process (P5) is lost, the 

non-faulty process (P2) detects it (P5) as faulty. In the second 

round, each process sends the records it is having, at the end 

of first round, to all others.  

A non-faulty process checks the received information from 

processes considered non-faulty and tries to decide. 

If a faulty process (P3) is not yet crashed (i.e. to be detected) 

and sends conflicting values, the non-faulty process (P2) 

cannot decide and a new phase is started. 

The agreement process ends when all the non-faulty processes 

decide on the same value. 

The Quick Consensus Algorithm [11] reaches an agreement 

in two rounds of message exchange. Each process has an 

initial decision value. In the first round of message exchange 

each process sends its decision value to every other process. 

The faulty processes may behave maliciously by sending 

different decision value to different processes. Thus at the end 

of first round every process site has a decision vector. 

In the second round of message exchange each process 

sends the decision vector formed in round one to every other 

process. It is assumed that the faulty processes would not 

behave maliciously in the second round and must send the 

correct decision vector to each process. At the end of round 

two each process site has a n×n matrix which it uses to 

calculate the decision value.  
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This algorithm is optimal in terms of message exchange 

overhead but not completely fault tolerant. The algorithm 

shows high degree of fault tolerance in round one but not in 

round two. The solution proposed in the current work reaches 

an agreement through early disposal of faulty processes as 

well as partitioning of the network while it tries to reach an 

agreement. Further, we have considered a broad fault model 

which maximises the fault tolerance of our algorithm. The 

algorithm is best suited for a star topology although topologies 

and communication delays do not affect the decision making 

procedure [5]. 

III. PROPOSED SCHEME 

In a network with large number of processes the message 

exchange overhead is huge. Due to presence of faulty 

processes several rounds of message exchange[2]are required 

to ensure that the decision taken by the non-faulty processes 

are correct. An early identification of the non faulty processes 

can quicken the decision making procedure .Our proposed 

scheme computes the consensus value in exactly two rounds 

of message exchange. The algorithm takes care of all kinds of 

fault models[6][7].A network partitioning scheme is 

introduced with a aim of further reducing the number of 

message exchanges. It reduces network congestion in a large 

distributed system. The following subsection reports the 

proposed scheme. 

A. Consensus Reaching Procedure in a group of processes 

The proposed scheme uses exactly two rounds of message 

exchange. Every process site must possess a initial decision 

value (0/1) before participating in the consensus procedure. A 

system of five processes (P1,P2,..P5) is considered among 

which P2 and P5 is assumed faulty. 

Round 1: All process site exchange their initial values. 

Round 2: At the beginning of round two each process Pi is 

aware of the initial value of every other process. A vector Vi is 

stored at every process site to store these values. The vector Vi 

stored at each process site is shown in Fig.1(a) 

Each process Pi then sends its vectors (Vi) to every other 

process. Thus at the end of round two every process posses a 

matrix (n×n array where n is the number of participating 

processes) 

Four different situations may arise depending upon the 

malicious behaviour of the faulty processes. The four different 

situations are discussed below: 

i) If none of the processors are faulty the matrix received at 

every processor site is the same. Such a situation is shown in 

Fig.2(a).The values in every column of the matrix is identical. 

A majority function is applied to every row to compute the 

decision value of each process. 

ii) The faulty processes behave maliciously in round 1 but 

not in round two. Process P5 has been assumed to have 

crashed. The 2-D matrix is identical at every processor site 

and has been shown in Fig.2(b) 

iii) The faulty processes behave maliciously in round 2 but 

not in round one. The 2-D formed at different process site are 

shown in Fig.3 

iv) The faulty processes behave maliciously in both rounds 

of message exchange. The 2-D matrix formed at different 

process sites are shown in Fig.4 

The solution to reach a consensus among the processes is 

described next. The following assumptions are taken while 

devising the solution. 

(1)The entire network is a fully connected one. The links 

among the processes/nodes are reliable and do not introduce 

any delay. 

(2)A dormant faulty process can send different values (0/1) 

to different processes in round one. It can distort the vector 

formed in round one before sending it in round two except its 

own decision value. d is the total number of dormant faulty 

process. 

(3) c is the total number of crash faulty process. Such a 

fault occurs when a process site crashes permanently. 

(4) f= d + c is the total number of faulty processes. 

 

Algorithm 1: 

(i) PL- List of process ids of participating processes 

maintained at each process maintained at each process site 

(ii)Vi - Initial vector received after round one at each 

process site Pi 

    (iii)Mi-  n×n matrix formed after round two at each process 

site Pi 

    (iv)Di- Decision vector at each process site Pi  

Input: processes ,initial value and PL for each process 

Output: Decision Value 

1. First Round: Each process sends its initial value to all other 

processes. 

            If  a process Pi does not receive any message from a  

                 process Pj  

            then  update its own vector Vi[j]=C 

2. Second Round: Each process Pi sends its own vector Vi 

formed  after  round two to every other process. 

            If  a process Pi does not  receive any vector from a  

                 process Pj  

           then update the matrix Mi  as :for i=1 to n  

                   { M[j][i]=C} 

3. Construction of decision vector D at each  process site P: 

For  i=1 to n 

    decision value, k=M[i][i] 

    If  column i contains the value C or does not contain a   

         majority of the value ,k 

   then the corresponding row and column of the matrix M  

            are cancelled out and update D[i]=X 

   else 

       column i in matrix M contains a majority of the value k.  

       We update D[i]=decision value, k  

    A sub list is created at D[i] consisting of process ids of 

those processes which have not received the actual decision 

value of process Pi. Such an arrangement for Fig.4(c) is shown 

in Fig.5(a).Process P5 is cancelled out as the fifth column in 

matrix M3 does not contain a majority of 0 which is the 

original decision of processor P5. 

    end for 
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4. Computation of decision value 

The vector D obtained in step 3 is processed in a 

descending order of the length of the sub-list attached to every 

process site. 

For  each  process site selected(process site with a sublist0 

    If   the column i in the matrix M does not have all 

              identical values  

    then   Update D[i]=X 

              Cancel out the corresponding row and column in                        

              matrix M 

              Cancel  i from the sub-lists of all other processes  

              where ever it appears(The above procedure is  

              shown in Fig.5(b).Process P2 is cancelled out as     

              the length of sub list at D[2] was the longest 

   else (the column i in matrix M contains all identical  

   values) 

           cancel the processes that appear in the sub-list of D[i] 

           update vector D and matrix M accordingly(The   

           above procedure is shown in Fig.5(c). 

end for 

If a process does not have a sub list in the vector D it is 

considered to be non faulty process. Finally a majority 

function is applied to the decision matrix to compute the final 

decision value. 

         

 

                              

                            V1                                                         V2                                                        V3                                                        V4                                                          V5   

                                                        Fig. 1 Decision Vector V at different process sites formed after round 1 

 

                                                                                                              
 

          Fig. 2(a) 2-D matrix at each process site when                                              Fig.2(b) 2-D matrix at every process site when                                     

                     none of the processes are faulty                                                                     P2(dormant) and P5(crash) are faulty 
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Fig. 3  2-D Matrix M at different process sites(P1 to P5)                    Fig. 4  2-D Matrix M at different process sites(P1 to P5)                       

when process P2 and P5 behaves maliciously in                                   when process P2 and P5 behave maliciously in 

 round 2 only                                                                                            in both rounds of message exchange 
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  1   0   1   0   1 

  0   0   0   0   1 

  1   1   1   0   1  

  1   0   1   0   0 

  0   1   0   1   0 

 

         Matrix M3 after cancelling out process P5 

 

                               

 

        Matrix D3 along with the sub-lists constructed  

                          from  Matrix M3 

                                Fig. 5(a) 

   

 

 

 

        

 

 

 

 

   

             Matrix M3 after cancelling out process P2 

 

 

           

              Vector D3 after cancelling process P2 

                                    Fig. 5(b) 

 

  1   0   1  0  1 

  0   0   0  0  1 

  1   1   1  0  1 

  1   0   1  0  0 

  0   1   0  1  0 

    

   1   X   1   0   X 

            Fig. 5(c) Final matrix M3 and vector D3 

B. Network Partitioning Scheme 

Message exchange overhead can be further reduced 

using a network partitioning scheme. It is particularly 

applicable for large networks where the network traffic is 

huge. A network consisting of n processors is partitioned in 

g number of groups. A particular processor (Li) is selected 

as the co-ordinator of each group Gi[11].The co-ordinator 

of each group uses algorithm 1 to compute the decision 

value of that particular group. Once the local rounds for all 

the groups are completed, the co-ordinator from each group 

participates in a global decision making round. Before the 

commencement of the global round, each processor must 

possess a value of the form (di,w) where di is the decision 

value of the that group and w is the number of non-faulty 

processors in that group. 

At the initialization phase of network partitioning, a 

randomly selected process Li (co-ordinator) broadcasts an 

initialization message[8][9]. After receiving it, each 

process of the system initializes a counter to ‘1’ and starts 

incrementing. The Li then further broadcasts g tokens. Each 

token can be received by one and only one process. The 

processors holding the tokens are the leaders. Each leader 

logically forms a group of n/g-1 processes. 

Algorithm 2:  

Input: leaders of the groups and their weighted local     

decision-value (d,w). 

Output: global-decision-value. 

1. If for any I, 1 < i < g (g is the number of groups), 

local  round for group Gi is finished leader  L of Gi sets a     

random timer RT[L] and starts decrementing it 

2. If L doesn’t receive any advertisement from an 

initiator of global round and RT[L] = 0 

then L sends local-decision d and weight (i.e. no. 

of non-faulty processes in Gi) to all the leaders, 

else go to step 2 

3. If a leader Q ∈ Gi receives initialization message 

from L then Q resets RT[Q]=0 

4. L initiates Algorithm 1 (quick-consensus) considering 

the set of  leaders as a group and decision 

value computed  is the global-decision-value 

5. the leader L of each group conveys global-decision 

value to all processes belonging to its group G 

6. return global-decision-value 

In global round (Algorithm 2), if weighted local 

decision-value is sent by the faulty leader of group G, there 

may be a chance of mishap. However, the proposed scheme 

can mask off such faults as the faulty leader is detected in 

the local round. Once the faulty leader is detected, a new 

leader is selected from G following a cellular automaton 

based election algorithm reported in [10]. The new leader 

participates in global round by sending a reply to the 

initiation message [11]. 
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IV.  ANALYTICAL AND SIMULATION RESULTS 

   This section reports performance evaluation of the 

proposed scheme in terms of number of message 

exchanges to reach a consensus. The analytical results are 

shown in the following sub-sections. 

A. Analytical Results 

The number of message exchanges required in the 

proposed scheme (Algorithm 1 and 2) is 

 

 
 

 where the 1
st
(2n(n-1)/g) term and the 2

nd
 (2g(g-1)) term 

represents the number of message exchanges required in 

local and global rounds respectively. The 3
rd

 (n-g-f) 

represents the number of message exchanges required by 

the leaders of each group to inform the global decision to 

all the non-faulty processes belonging to that group. 

B. Simulation Results  

The performance of the proposed scheme is compared with 

the SMBTC [3] and agreement-at-partition [12] in terms of 

message exchange overhead while reaching an agreement. 

Table I compares the message exchanges required by the 

SMBTC and the proposed scheme without network 

partitioning. The first column shows the number of 

participating processes. The second column represents the 

number of allowable faulty processes. To take the random 

behaviour of faulty processes into account, three sets of 

observations have been taken for different crash times. This 

is shown in column three. Column four shows the number 

of message exchanges and column five shows their average. 

Finally column five represents the number of message 

exchanges in the proposed scheme. Fig 6 shows the 

comparison between these two schemes. 

 

Table II compares the performance of the proposed scheme 

(global-agreement) and agreement-at-partition. The 

observations are recorded for a fixed number of 50 

processes partitioned into different number of groups. The 

first column shows the number of groups. The second 

column shows the number of allowable faulty processes. 

The third column shows the number of message exchanges 

for different crash times of the faulty processes. The fifth 

column shows the average number of message exchanges 

and the last column represents the proposed algorithm with 

partitioning scheme. 

 

The results shown in the tables indicate that the proposed 

algorithm shows maximum fault tolerance while achieving 

optimality in terms of message exchanges. Both SMBTC 

and agreement-at-partition take arbitrary number of 

message exchanges to reach an agreement. The proposed 

                        

                                                     TABLE I 

                  PERFORMANCE EVALUATION OF PROPOSED SCHEME AND SMBTC 

 

 

 No. of       

Process         

 

 

No. of  

faulty 

process 

           SMBTC [3] Prop-

osed  

Schm 

Obs. Time for  

   diff. Crash  

      times 

No.of   

 Msg. 

Avg. 

Msg. 

No.  

Of  

Msg. 

     

   15 

   

    4 

        1 1800  

2100 

   

   420         2 2250 

        3 2250 

 

   20 

 

   6 

        1 4000  

3467 

     

  760         2  1600 

        3 4800 

 

   25 

 

  12 

        1 7500  

6667 

  

  1200         2 6250 

        3 6250 

  

   50 

 

  24 

        1 65000  

5833

3 

 

  4900         2 65000 

        3 45000 

 

 
                          Fig. 6 Performance comparison I 

                                           TABLE II 

       PERFORMANCE COMPARISON BETWEEN PROPOSED   

                SCHEME AND AGREEMENT -AT -PARTITION 

 

  

 

No. of  

Groups 

 

  

No. Of  

  faulty 

processes 

          

         SCHEME [12] 
 

 

 Proposed  

  Scheme       No. of   

     message  

     exchanges 
   

 

Avg. Msg. 

 

    4 

 

   16 

       4768  

   4562 

 

  1279        4376 

       4512 

 

   5 

 

   16 

       2650  

   2817 

 

  1040        3100 

       2700 

 

  10 

 

   16 

       1400  

   1300 

 

   694        1300 

       1200 

 

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]



 
                       Fig. 7 Performance Comparison II 

 

scheme on the other hand reaches consensus in exactly two 

rounds of message exchange. The proposed algorithm 

overcomes the assumptions of the Quick Consensus [13]. 

Fig. 7 shows the impact of partitioning on the proposed 

scheme. We can conclude that that the number of message 

exchanges reduces with the increase in the number of 

partitions but only up to a threshold limit. 

 

                                             V. CONCLUSIONS 

This work addresses the issue of reaching an agreement 

in a distributed system. An early disposal of faulty 

processes/processors makes the decision making processes 

so quick. A network partitioning scheme reduces message 

exchange overhead further. The algorithm is highly fault 

tolerant. It can be of great use in any real time distributed 

system. Thus it can be concluded that two rounds of 

message exchange is sufficient to reach an agreement in a 

fully connected link fallible network when the total number 

of process failure is less than or equal to (N-1)/2 where ‘N’ 

is the total number of processors in the given network. This 

is the experimental result which got through the simulation 

of the program and is supported by the theoretical formula.   
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