
 A fault tolerant approach for reaching consensus in a

distributed system

Abstract—This paper addresses solution to the problem of

reaching an agreement (consensus) in a distributed system. The

aim is to maximise fault tolerance as well as reduce the message

exchange overhead. The proposed algorithm uses as few as two

rounds of message exchange. This better efficiency is achieved

through early disposal of faulty processes. The network

partitioning scheme proposed later further reduces message

exchange overhead and thus network traffic

Keywords— Consensus, Byzantine Agreement, Reaching

Agreement, Early Stopping, Decision Vector

I. INTRODUCTION

In a distributed system it is often required to reach a

common agreement (consensus) among the processes[6].The

participating process must co-operate among themselves for

such an agreement. This operation becomes all the more

difficult when the behaviour of the processes become

unpredictable.

A number of solutions[1],[2] has been reported for reaching

this agreement with the target maximising fault tolerance and

reducing message exchange. However optimality is yet to be

achieved considering both these clauses. The Quick consensus

algorithm described in [11] addresses a viable solution to this

problem but with some assumptions. The proposed scheme is

set to achieve better efficiency through early disposal of faulty

processes in exactly two rounds of message exchange. The

algorithm ensures minimum message exchange considering all

kinds of faults[4] [6].The algorithm applies a upper bound on

the number of faulty process as n≥2t where n is the number of

processes and t is the number of faulty processes.

II. PREVIOUS WORK

The Byzantine Agreement Problem
In Byzantine agreement, one process (designated as

initiator) broadcasts a value that is to be agreed upon. All

processes then communicate with each other through message

exchanges. All non-faulty processes finally agree on the same

value. If the initiator is non-faulty then all the non faulty

processes agree on the value of the initiator.

The algorithm proposed in [1] solves the Byzantine

agreement problem for n processes but with the upper bound

of n ≥ 3t+1 where t is the maximum number of tolerable faulty

processes .It is found in [1] and [2] that any conventational

Byzantine agreement algorithm would require t+1 rounds of

message exchange in the worst case.

The Synchronous Mortal Byzantine Tolerant Consensus

(SMBTC) approach [3] improves fault tolerance by n≥2t but

with the assumption that the faulty processes must crash

within a finite time. A system of 5 processes(P1,P2,...,P5) out

of which P3 and P5 are faulty has been cited as an example.

Processor P1 initiates the procedure by sending its decision

value to all other processes. Then it passes through certain

phases with each phase consisting of two rounds.

In the first round of a phase, each process sends its

proposed and decision values to all. If any non-faulty process

(P2) identifies that the message from a process (P5) is lost, the

non-faulty process (P2) detects it (P5) as faulty. In the second

round, each process sends the records it is having, at the end

of first round, to all others.

A non-faulty process checks the received information from

processes considered non-faulty and tries to decide.

If a faulty process (P3) is not yet crashed (i.e. to be detected)

and sends conflicting values, the non-faulty process (P2)

cannot decide and a new phase is started.

The agreement process ends when all the non-faulty processes

decide on the same value.

The Quick Consensus Algorithm [11] reaches an agreement

in two rounds of message exchange. Each process has an

initial decision value. In the first round of message exchange

each process sends its decision value to every other process.

The faulty processes may behave maliciously by sending

different decision value to different processes. Thus at the end

of first round every process site has a decision vector.

In the second round of message exchange each process

sends the decision vector formed in round one to every other

process. It is assumed that the faulty processes would not

behave maliciously in the second round and must send the

correct decision vector to each process. At the end of round

two each process site has a n×n matrix which it uses to

calculate the decision value.

Anirban Roy

Computer Science and

Engineering

NIT Durgapur

Durgapur, India

anirbanroy88@gmail.com

m

Nishad T M

science and Humanities

National College of

Engineering

Tirunelveli, India

searchofme@gmail.

com

Sangeetha. K. G

Computer Science and

Engineering

National College of

Engineering

Tirunelveli, India

yavanchitra@gmail.com

R.Muthamil Selvi

Computer Science and

Engineering

National College of

Engineering

Tirunelveli, India

rmg.selvi@gmail.com

Arpan Mondal

Electronics and

Communication

NIT Durgapur

Durgapur, India

arpamondal.nitdgp@

gmail.com

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

This algorithm is optimal in terms of message exchange

overhead but not completely fault tolerant. The algorithm

shows high degree of fault tolerance in round one but not in

round two. The solution proposed in the current work reaches

an agreement through early disposal of faulty processes as

well as partitioning of the network while it tries to reach an

agreement. Further, we have considered a broad fault model

which maximises the fault tolerance of our algorithm. The

algorithm is best suited for a star topology although topologies

and communication delays do not affect the decision making

procedure [5].

III. PROPOSED SCHEME

In a network with large number of processes the message

exchange overhead is huge. Due to presence of faulty

processes several rounds of message exchange[2]are required

to ensure that the decision taken by the non-faulty processes

are correct. An early identification of the non faulty processes

can quicken the decision making procedure .Our proposed

scheme computes the consensus value in exactly two rounds

of message exchange. The algorithm takes care of all kinds of

fault models[6][7].A network partitioning scheme is

introduced with a aim of further reducing the number of

message exchanges. It reduces network congestion in a large

distributed system. The following subsection reports the

proposed scheme.

A. Consensus Reaching Procedure in a group of processes

The proposed scheme uses exactly two rounds of message

exchange. Every process site must possess a initial decision

value (0/1) before participating in the consensus procedure. A

system of five processes (P1,P2,..P5) is considered among

which P2 and P5 is assumed faulty.

Round 1: All process site exchange their initial values.

Round 2: At the beginning of round two each process Pi is

aware of the initial value of every other process. A vector Vi is

stored at every process site to store these values. The vector Vi

stored at each process site is shown in Fig.1(a)

Each process Pi then sends its vectors (Vi) to every other

process. Thus at the end of round two every process posses a

matrix (n×n array where n is the number of participating

processes)

Four different situations may arise depending upon the

malicious behaviour of the faulty processes. The four different

situations are discussed below:

i) If none of the processors are faulty the matrix received at

every processor site is the same. Such a situation is shown in

Fig.2(a).The values in every column of the matrix is identical.

A majority function is applied to every row to compute the

decision value of each process.

ii) The faulty processes behave maliciously in round 1 but

not in round two. Process P5 has been assumed to have

crashed. The 2-D matrix is identical at every processor site

and has been shown in Fig.2(b)

iii) The faulty processes behave maliciously in round 2 but

not in round one. The 2-D formed at different process site are

shown in Fig.3

iv) The faulty processes behave maliciously in both rounds

of message exchange. The 2-D matrix formed at different

process sites are shown in Fig.4

The solution to reach a consensus among the processes is

described next. The following assumptions are taken while

devising the solution.

(1)The entire network is a fully connected one. The links

among the processes/nodes are reliable and do not introduce

any delay.

(2)A dormant faulty process can send different values (0/1)

to different processes in round one. It can distort the vector

formed in round one before sending it in round two except its

own decision value. d is the total number of dormant faulty

process.

(3) c is the total number of crash faulty process. Such a

fault occurs when a process site crashes permanently.

(4) f= d + c is the total number of faulty processes.

Algorithm 1:

(i) PL- List of process ids of participating processes

maintained at each process maintained at each process site

(ii)Vi - Initial vector received after round one at each

process site Pi

 (iii)Mi- n×n matrix formed after round two at each process

site Pi

 (iv)Di- Decision vector at each process site Pi

Input: processes ,initial value and PL for each process

Output: Decision Value

1. First Round: Each process sends its initial value to all other

processes.

 If a process Pi does not receive any message from a

 process Pj

 then update its own vector Vi[j]=C

2. Second Round: Each process Pi sends its own vector Vi

formed after round two to every other process.

 If a process Pi does not receive any vector from a

 process Pj

 then update the matrix Mi as :for i=1 to n

 { M[j][i]=C}

3. Construction of decision vector D at each process site P:

For i=1 to n

 decision value, k=M[i][i]

 If column i contains the value C or does not contain a

 majority of the value ,k

 then the corresponding row and column of the matrix M

 are cancelled out and update D[i]=X

 else

 column i in matrix M contains a majority of the value k.

 We update D[i]=decision value, k

 A sub list is created at D[i] consisting of process ids of

those processes which have not received the actual decision

value of process Pi. Such an arrangement for Fig.4(c) is shown

in Fig.5(a).Process P5 is cancelled out as the fifth column in

matrix M3 does not contain a majority of 0 which is the

original decision of processor P5.

 end for

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

4. Computation of decision value

The vector D obtained in step 3 is processed in a

descending order of the length of the sub-list attached to every

process site.

For each process site selected(process site with a sublist0

 If the column i in the matrix M does not have all

 identical values

 then Update D[i]=X

 Cancel out the corresponding row and column in

 matrix M

 Cancel i from the sub-lists of all other processes

 where ever it appears(The above procedure is

 shown in Fig.5(b).Process P2 is cancelled out as

 the length of sub list at D[2] was the longest

 else (the column i in matrix M contains all identical

 values)

 cancel the processes that appear in the sub-list of D[i]

 update vector D and matrix M accordingly(The

 above procedure is shown in Fig.5(c).

end for

If a process does not have a sub list in the vector D it is

considered to be non faulty process. Finally a majority

function is applied to the decision matrix to compute the final

decision value.

 V1 V2 V3 V4 V5

 Fig. 1 Decision Vector V at different process sites formed after round 1

 Fig. 2(a) 2-D matrix at each process site when Fig.2(b) 2-D matrix at every process site when

 none of the processes are faulty P2(dormant) and P5(crash) are faulty

1 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 1 0 0

1 1 0 1 0

Fig. 3 2-D Matrix M at different process sites(P1 to P5) Fig. 4 2-D Matrix M at different process sites(P1 to P5)

when process P2 and P5 behaves maliciously in when process P2 and P5 behave maliciously in

 round 2 only in both rounds of message exchange

1 0 1 0 1

1 1 0 0 0

1 1 1 0 1

1 0 1 0 0

1 0 1 0 0

1 0 1 0 1

0 0 0 0 1

1 1 1 0 1

1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

1 0 0 0 1

1 0 1 0 0

1 0 1 0 0

1 1 0 1 0

1 0 1 0 1

1 0 0 1 1

1 1 1 0 1

1 0 1 0 0

1 1 0 1 0

1 0 1 0 1

0 0 1 0 0

1 1 1 0 1

1 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 0

1 1 1 0 0

1 0 1 0 1

0 0 1 0 1

1 1 1 0 1

1 0 1 0 0

1 1 0 0 0

1 0 1 0 0

0 0 1 1 1

1 0 1 0 0

1 0 1 0 0

0 1 1 0 0

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

 1 0 1 0 1

 0 0 0 0 1

 1 1 1 0 1

 1 0 1 0 0

 0 1 0 1 0

 Matrix M3 after cancelling out process P5

 Matrix D3 along with the sub-lists constructed

 from Matrix M3

 Fig. 5(a)

 Matrix M3 after cancelling out process P2

 Vector D3 after cancelling process P2

 Fig. 5(b)

 1 0 1 0 1

 0 0 0 0 1

 1 1 1 0 1

 1 0 1 0 0

 0 1 0 1 0

 1 X 1 0 X

 Fig. 5(c) Final matrix M3 and vector D3

B. Network Partitioning Scheme

Message exchange overhead can be further reduced

using a network partitioning scheme. It is particularly

applicable for large networks where the network traffic is

huge. A network consisting of n processors is partitioned in

g number of groups. A particular processor (Li) is selected

as the co-ordinator of each group Gi[11].The co-ordinator

of each group uses algorithm 1 to compute the decision

value of that particular group. Once the local rounds for all

the groups are completed, the co-ordinator from each group

participates in a global decision making round. Before the

commencement of the global round, each processor must

possess a value of the form (di,w) where di is the decision

value of the that group and w is the number of non-faulty

processors in that group.

At the initialization phase of network partitioning, a

randomly selected process Li (co-ordinator) broadcasts an

initialization message[8][9]. After receiving it, each

process of the system initializes a counter to ‘1’ and starts

incrementing. The Li then further broadcasts g tokens. Each

token can be received by one and only one process. The

processors holding the tokens are the leaders. Each leader

logically forms a group of n/g-1 processes.

Algorithm 2:

Input: leaders of the groups and their weighted local

decision-value (d,w).

Output: global-decision-value.

1. If for any I, 1 < i < g (g is the number of groups),

local round for group Gi is finished leader L of Gi sets a

random timer RT[L] and starts decrementing it

2. If L doesn’t receive any advertisement from an

initiator of global round and RT[L] = 0

then L sends local-decision d and weight (i.e. no.

of non-faulty processes in Gi) to all the leaders,

else go to step 2

3. If a leader Q ∈ Gi receives initialization message

from L then Q resets RT[Q]=0

4. L initiates Algorithm 1 (quick-consensus) considering

the set of leaders as a group and decision

value computed is the global-decision-value

5. the leader L of each group conveys global-decision

value to all processes belonging to its group G

6. return global-decision-value

In global round (Algorithm 2), if weighted local

decision-value is sent by the faulty leader of group G, there

may be a chance of mishap. However, the proposed scheme

can mask off such faults as the faulty leader is detected in

the local round. Once the faulty leader is detected, a new

leader is selected from G following a cellular automaton

based election algorithm reported in [10]. The new leader

participates in global round by sending a reply to the

initiation message [11].

1 0 1 0 1

0 0 0 0 1

1 1 1 0 1

1 0 1 0 0

0 1 0 1 0

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

IV. ANALYTICAL AND SIMULATION RESULTS

 This section reports performance evaluation of the

proposed scheme in terms of number of message

exchanges to reach a consensus. The analytical results are

shown in the following sub-sections.

A. Analytical Results

The number of message exchanges required in the

proposed scheme (Algorithm 1 and 2) is

 where the 1
st
(2n(n-1)/g) term and the 2

nd
 (2g(g-1)) term

represents the number of message exchanges required in

local and global rounds respectively. The 3
rd

 (n-g-f)

represents the number of message exchanges required by

the leaders of each group to inform the global decision to

all the non-faulty processes belonging to that group.

B. Simulation Results

The performance of the proposed scheme is compared with

the SMBTC [3] and agreement-at-partition [12] in terms of

message exchange overhead while reaching an agreement.

Table I compares the message exchanges required by the

SMBTC and the proposed scheme without network

partitioning. The first column shows the number of

participating processes. The second column represents the

number of allowable faulty processes. To take the random

behaviour of faulty processes into account, three sets of

observations have been taken for different crash times. This

is shown in column three. Column four shows the number

of message exchanges and column five shows their average.

Finally column five represents the number of message

exchanges in the proposed scheme. Fig 6 shows the

comparison between these two schemes.

Table II compares the performance of the proposed scheme

(global-agreement) and agreement-at-partition. The

observations are recorded for a fixed number of 50

processes partitioned into different number of groups. The

first column shows the number of groups. The second

column shows the number of allowable faulty processes.

The third column shows the number of message exchanges

for different crash times of the faulty processes. The fifth

column shows the average number of message exchanges

and the last column represents the proposed algorithm with

partitioning scheme.

The results shown in the tables indicate that the proposed

algorithm shows maximum fault tolerance while achieving

optimality in terms of message exchanges. Both SMBTC

and agreement-at-partition take arbitrary number of

message exchanges to reach an agreement. The proposed

 TABLE I

 PERFORMANCE EVALUATION OF PROPOSED SCHEME AND SMBTC

 No. of

Process

No. of

faulty

process

 SMBTC [3] Prop-

osed

Schm

Obs. Time for

 diff. Crash

 times

No.of

 Msg.

Avg.

Msg.

No.

Of

Msg.

 15

 4

 1 1800

2100

 420 2 2250

 3 2250

 20

 6

 1 4000

3467

 760 2 1600

 3 4800

 25

 12

 1 7500

6667

 1200 2 6250

 3 6250

 50

 24

 1 65000

5833

3

 4900 2 65000

 3 45000

 Fig. 6 Performance comparison I

 TABLE II

 PERFORMANCE COMPARISON BETWEEN PROPOSED

 SCHEME AND AGREEMENT -AT -PARTITION

No. of

Groups

No. Of

 faulty

processes

 SCHEME [12]

 Proposed

 Scheme No. of

 message

 exchanges

Avg. Msg.

 4

 16

 4768

 4562

 1279 4376

 4512

 5

 16

 2650

 2817

 1040 3100

 2700

 10

 16

 1400

 1300

 694 1300

 1200

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

 Fig. 7 Performance Comparison II

scheme on the other hand reaches consensus in exactly two

rounds of message exchange. The proposed algorithm

overcomes the assumptions of the Quick Consensus [13].

Fig. 7 shows the impact of partitioning on the proposed

scheme. We can conclude that that the number of message

exchanges reduces with the increase in the number of

partitions but only up to a threshold limit.

 V. CONCLUSIONS

This work addresses the issue of reaching an agreement

in a distributed system. An early disposal of faulty

processes/processors makes the decision making processes

so quick. A network partitioning scheme reduces message

exchange overhead further. The algorithm is highly fault

tolerant. It can be of great use in any real time distributed

system. Thus it can be concluded that two rounds of

message exchange is sufficient to reach an agreement in a

fully connected link fallible network when the total number

of process failure is less than or equal to (N-1)/2 where ‘N’

is the total number of processors in the given network. This

is the experimental result which got through the simulation

of the program and is supported by the theoretical formula.

.

 REFERENCES

[1] Lamport L.,Pease M.,Reaching Agreement in

Presence of Faults', Journal of ACM,Vol.27 pp.228-

234,Apr,1980

[2] A.W.Krings, T.Feyer 'The Byzantine Agreement

Problem: Optimal Early Stopping' in Proceedings of the

32nd Hawaii International Conference on System

Science,1999

[3] J.Widder,G.Gridling,B.Weiss,'Synchronous Consensus

with Mortal Byzantine' in Proceedings of the 37th Annual

IEEE/IFP International Conference on Dependable

Systems and Networks

[4] P.Lincoln, J.Rushby 'A Formally Verified Algorithm

for Interactive Consistency Under a Hybrid Fault Model' in

Fault-Tolerant Computing Symposium FICS

23,Toulouse,France June 1993

[5] O.Cihan and M.Akar 'Effect of Bounded Delay on

Convergence Speed of Distributed Consensus Algorithms'

in 2009 IEEE International Conference on Control and

Automation Christchurch, New Zealand, December 2009

[6] S.Ghosh 'Distributed Systems An Algorithmic

Approach' , Chapman and Hall/CRC, 2006

[7] N.A.Lynch 'Distributed Algorithms' ,Morgan

Kaufmann Inc. , 1996

[8] M.Singhal, N.G. Shivaratri 'Advanced concepts in

operating systems: distributed, database, and

multiprocessor operating systems', Tata McGraw-Hill,2001

[9] Raymond K.,'A Tree Based Algorithm for Distributed

Mutual Exclusion', ACM Trans.Computer Systems,1989

[10] Kalyan Mahata, Meghnath Saha, and Sukanta Das,

‘Cellular Automata Based Coordinator Selection Scheme

in Distributed System’, accepted in CSC’09, USA, 2009.

[11] M. Dalui, B Chakraborty, B. K. Sikdar, ‘Quick

Consensus through early disposal of faulty processes’,

Submitted in Proceedings of the 2009 IEEE International

Conference on Systems, Man, and Cybernetics San

Antonio,TX, USA - October 2009

[12] M.Dalui, B Chakraborty, B.K.Sikdar, ‘An Efficient

Scheme for Quick Consensus In Partitioned Adhoc-

Network’, Submitted in 34
th

 IEEE Conference on Local

Computer Networks, Switzerland, 2009

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

