

 Design Issues for Modeling Behavior of Distributed

System

Harshada Dhande

IT department

Vidyalankar Institute of Technology
 Mumbai University.

harshudhande@gmail.com

Abstract—There are several issues in the distributed

system as scalability, flexibility, heterogeneity, security,

abstraction Etc. By considering this issues we design a

distributed system but currently using models does not

satisfies design issues completely Hence by putting

appropriate abstractions we can improve performance of

distributed system. This paper describes the survey on

these designing issues in modeling behavior of a system.

I. INTRODUCTION

 Many software engineering projects involve the

automation of "real-world" systems, consisting of

interacting entities that work together to perform

specific tasks. These real-world systems often exhibit

intrinsic qualities that parallel the inherent

characteristics of distributed software systems. One of

these qualities is concurrency. A real-world system

possesses this quality if it includes more than one entity

at any time, which most do. For example, consider a

system for shipping parcel packages around the world.

At any time, this system may include many physical

entities (e.g., parcels, customers, and locations) and

abstract concepts (e.g., rates, origins, and destinations.)

Each of these can exist independently and behavior

concurrently.

Distributed software systems provide true

concurrency by disbursing objects over a network of

computing resources. In contrast, centralized (single-

processor) systems can only simulate concurrency.

Another shared quality is partial failure. In real-world

systems, a single entity, like a parcel or customer, can

fail independent of the rest of the system. The same is

true for distributed systems since individual computing

resources in the network can fail or become

unreachable. In centralized systems, failure is usually

treated as an all-or-nothing condition. A third common
quality is dynamic, incremental change. Real-world

systems rarely require a complete shutdown to make

changes in the way that its work is performed. In fact,

change is often considered an integral part of a real-

world system instead of an external process. Can you

image a worldwide shipping company shutting down its

entire operation every time an office needed to add a

new piece of equipment or open up a new distribution

channel? The same situation exists for distributed

systems. Because of the impracticality of shutting down

an entire distributed system, mechanisms for dynamic

and incremental change are often built into the

infrastructure. The similarities between real-world and

distributed software systems, might lead one to

conclude that an accurate conceptual model of the first

could be easily transformed into a good design for the

second. However, this is not true because of some

subtle and not-so-subtle differences in what the models

represent and because of additional design issues

related to distributed systems.

II. CHALLENGES IN GOING FROM ANALYSIS TO

DESIGN

In general, the process of going from analysis to
design in software development has always involved
mapping or transforming conceptual models. Models
used during analysis, regardless of whether they are
formal, informal or subconscious, aim to describe real-
world systems from a problem-domain perspective. The
concepts found in an analysis model should relate
directly to concepts in the real-world system. Models
used for software design, on the other hand, involve an
additional level of abstraction and serve a different
purpose.

 They describe software concepts, like objects,
structures, and processes, that only indirectly relate to
concepts from the problem-domain. The purpose of a
design model is to provide a blueprint for
implementation and a framework for subsequent
evolution of the system. It used in the maximal breach
path algorithm, can built into the plane with randomly
placed discrete set of points(sites). In 2D,diagram of the
set of discrete sites partitions the plane into a set of
convex polygon are closest to one site. This
construction effectively produces polygon with edges
that are equidistant from neighboring sites. Ideally, the
conceptual distance between an analysis and a
corresponding design should be kept to a minimum.
This improves understandability, traceability, and

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

mailto:harshudhande@gmail.com

11

maintainability. For distributed systems, however, there
are several fundamental problems that tend to increase
the conceptual distance and complicate the design
process. Below is a summary of some of them.

A. Complex Mapping

The mapping between concepts in the analysis and

those in the design is not one-to-one. A single real-

world entity can be represented by many software

objects. For example, to increase access time, a parcel-

tracking system may include multiple software objects

for a single parcel and distribute them across the

network.

B. Fragmented Behaviour

A software object may represent only a portion of

an entity described in the analysis. I will refer to such

partial representations, as object fragments [Clyde-

1993]. The object fragments that represent a specific

real-world object do not have to be uniform, as long as

they collectively encapsulate the required information

and behavior. For example, in a client/server

environment, client object fragments are often very

lightweight and communicate with their server

counterparts to provide users with the complete

functionality.

C. Object Distribution

The distribution of software objects doesn't have to

mirror the distribution of corresponding entities in the

real-world. Just because a parcel is in Boston, doesn't

mean that the software objects that represent it have to

be in Boston. Decisions on how to distribute objects

across system should consider other factors like

performance, reliability, security, and fault tolerance.

D. Emergent communication play a major role

Distributed software systems involve many of

different kinds of communications. Most of them,

however, do not relate directly to communications in

the problem domain. Some exist for house keeping

reasons, like replica management, process and

transaction synchronization, name resolution, and

service binding. Others exist as a consequence of using

a particular communication architecture. In either case,

these emergent communications play a significant role

in design, and therefore, cannot be left out of concept

model.

E. Emergent Resource Sharing

Distribution can also introduce a significant amount

of resource sharing that didn't exist in the analysis. For

example, in the real-world parcel system, only one

person is able to handling a given parcel at a time. In a

distributed software system, many different users may

be accessing and updating the software object(s) for

that parcel at that time.

F. Transparency

To help make a distributed system more open,

extensible, and fault tolerant, designers attempt to

shield users from issues dealing with the actual location

of an object (or service), concurrent access, replication,

migration, scaling, and failures. This principle is called

transparency [Coulouris-1994]. Unfortunately,

techniques for achieving transparency further increase

the conceptual distance between analysis and design.

III. REQUIREMENT FOR BETTER CONCEPTUAL MODEL

Although some of the problems mentioned above are

due to inadequate development tools for distributed

systems, it is not likely that better, more sophisticated

tools will make a difference. In fact, they might even

make the problems worse. Inappropriate use of a new

tool could accidently increase the emergent

communications and resource sharing, and thus, further

complicates the design. A fully integrated and
minimized collection of development tools could

substantially reduce the complexity of distributed

systems design. But, in an open market with a wide

diversity of platforms and with a constant infusion of

new technology, such a development environment is

not realistic. Our best hope is to improve our conceptual

models for distributed software systems. Below are a

few requirements, beyond those commonly found in

existing conceptual models,

 Abstractions for mapping software objects (or

object fragments) to entities described in the
analysis.

 Abstractions for describing object

fragmentation, especially for behavior.

 Better mechanisms for specializing objects and

object fragments in ways that don't violate
inherited semantics.

 Abstractions for specifying and constraining

object distribution, replication, and migration.

 Leveled abstractions for dealing with emergent

communications and resource sharing.

 Abstractions for proven patterns or idioms that

can help designer achieve transparency and

other desirable properties.

These proposed abstractions should give software

engineer control over design decisions, but allow them

to hide the details when they are not pertinent to a
particular discussion.

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

12

IV. CONCLUSION

Distributed systems design is unnecessarily complex

because our current conceptual models do not provide

the right kinds of abstractions. By adding appropriate

abstraction to our models, we can also reduce the

conceptual distance between analysis and design.

REFERENCES

[1][Clyde-1993] Clyde, S., "Object Mitosis: A Systematic

Approach To Splitting Objects Across Subsystems",

International Workshop on Object Orientation and Operating

Systems, December, 1993

[2][Coulouris-1994] Coulouris, G. F., J. Dollimore, and T.

Kindberg, Distributed Systems: Concepts and Design, Second

Edition, Addison Wesley, 1994

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

