
1

The Amoeba Distributed Operating System-Case

Study

Harshada Dhande

IT department

Vidyalankar Institute of Technology

 Mumbai University.

harshudhande@gmail.com

Abstract—This document gives information about

Amoeba Operating system with all the features provided

by this technology. The software and hardware used with

the special purposes so that this operating system was

designed is also mentioned in the paper.

I. INTRODUCTION

Roughly speaking, we can divide the history of

modern computing into the following eras:

 1970s: Timesharing (1 computer with many

users)

 1980s: Personal computing (1 computer per

user)

 1990s: Parallel computing (many computers

per user)

Until about 1980, computers were huge, expensive, and

located in computer centers. Most organizations had a

single large machine.In the 1980s, prices came down to

the point where each user could have his or her own

personal computer or work station. These machines

were often networked together,so that users could do

remote logins on other people‟s computers or share files

in various (often ad hoc) ways. Nowadays some

systems have many processors per user, either in the

form of a parallel computer or a large collection of

CPUs shared by a small user community. Such systems

are usually called parallel or distributed computer

systems.This development raises the question of what

kind of software will be needed for these new systems.

The answer of this question has resulted in the
development of a new distributed operating system,

called Amoeba, designed for an environment consisting

of a large number of computers. Amoeba is available

for free to universities and other educational institutions

and for special commercial prices and conditions to

corporate, government, and other users, as described

later.Section 2 describes actually what is Amoeba.

Section 3explain design goals. Section 3 and 4 talks

about the structure of Amoeba with some concepts

providing by it. Section 5 and 6 explains technical and

nontechnical aspects.

II. WHAT IS AMOEBA?

Amoeba is a general-purpose distributed operating

system. It is designed to take a collection of machines

and make them act together as a single integrated
system. In general, users are not aware of the number

and location of the processors that run their commands,

nor of the number and location of the file servers that

store their files. To the casual user, an Amoeba system

looks like a single old-fashioned time-sharing system.

Amoeba is an ongoing research project. It should be

thought of as a platform for doing research and

development in distributed and parallel systems,

languages, protocols and applications. Although it

provides some UNIX emulation, and has a definite

UNIX-like flavor (including over 100 UNIX-like

utilities), it is NOT a plug-compatible replacement for

UNIX. It should be of interest to educators and

researchers who want the source code of a distributed

operating system to inspect and tinker with, as well as

to those who need a base to run distributed and parallel

applications. Amoeba is intended for both
„„distributed‟‟ computing (multiple independent users

working on different projects) and „„parallel‟‟

computing (e.g., one user using 50 CPUs to play chess

in parallel). Amoeba provides the necessary mechanism

for doing both distributed and parallel applications, but

the policy is entirely determined by user-level

programs. For example, both a traditional (i.e.

sequential) „make‟ and a new parallel „amake‟ are

supplied.

III. DESIGN GOALS

The basic design goals of Amoeba are:

 Distribution—Connecting together many
machines

 Parallelism—Allowing individual jobs to use

multiple CPUs easily

 Transparency—Having the collection of

computers act like a single system

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

mailto:harshudhande@gmail.com

2

 Performance—Achieving all of the above in

an efficient manner

Amoeba is a distributed system, in which multiple
machines can be connected together. These machines

need not all be of the same kind. The machines can be

spread around a building on a LAN. Amoeba uses the

high performance FLIP network protocol for LAN

communication. If an Amoeba machine has more than

one network interface it will automatically act as a

FLIP router between the various networks and thus

connect the various LANs together. Amoeba is also a

parallel system. This means that a single job or

program can use multiple processors to gain speed. For

example, a branch and bound problem such as the

Traveling Salesman Problem can use tens or even

hundreds of CPUs, if available, all working together to

solve the problem more quickly. Large „„back end‟‟

multiprocessors, for example, can be harnessed this

way as big „„compute engines.‟‟ Another key goal is

transparency. The user need not know the number or
the location of the CPUs, nor the place where the files

are stored. Similarly, issues like file replication are

handled largely automatically, without manual

intervent- ion by the users. Put in different terms, a user

does not log into a specific machine, but into the system

as a whole. There is no concept of a „„home machine.‟‟

Once logged in, the user does not have to give special

remote login commands to take advantage of multiple

processors or do special remote mount operations to

access distant files. To the user, the whole system looks

like a single conventional timesharing system.

Performance and reliability are always key issues in

operating systems, so substantial effort has gone into

dealing with them. In particular, the basic

communication mechanism has been optimized to allow

messages to be sent and replies received with a

minimum of delay, and to allow large blocks of data to

be shipped from machine to machine at high
bandwidth. These building blocks serve as the basis for

implementing high performance subsystems and

applications on Amoeba.

IV. SYSTEM ARCHITECTURE

Since distributed and parallel computing is different
from personal computing, it is worthwhile first
describing the kind of hardware configuration for which
Amoeba was designed. A typical Amoeba system will
consist of three functional classes of machines. First,
each user has a workstation for running the user
interface, the X window system. This workstation can
be a typical engineering workstation, or a specialized X
terminal. It is entirely dedicated to running the user
interface, and does not have to do other computing.
Second, there exists a pool of processors that are
dynamically allocated to users as required. These

processors can be part of a multiprocessor or
multicomputer, be a collection of single-board
computers or be a group of workstations allocated for
this purpose. Usually, each pool processor has several
megabytes of private memory, that is, pool processors
need not have any shared memory (but it is not
forbidden). Communication is performed by sending
packets over the LAN. All the heavy computing
happens in the processor pool. Third, there are
specialized servers, such as file servers and directory
servers that run all the time. They may run on processor
pool processors, or on dedicated hardware ,as desired.
All these components must be connected by a fast
LAN. At present only Ethernet is supported, but ports
to other LANs are possible.

V. FUNDAMENTAL CONCEPTS OF AMOEBA

A. Microkernel+server architecure

Amoeba was designed was with what is currently

termed a microkernel architecture. This means that

every machine in an Amoeba system runs a small,

identical piece of software called the kernel. The kernel

supports the basic process, communication, and object

primitives. It also handles raw device I/O and memory

management. Everything else is built on top of these

fundamentals, usually by user-space server processes.

Thus the system is structured as a collection of

independent processes. Some of these are user

processes, running application programs. Such

processes are called clients. Others are server

processes, such as the Bullet file server or the directory

server. The basic function of the microkernel is to

provide an environment in which clients and servers

can run and communicate with one another.

This modular design makes it easier to understand,

maintain, and modify the system. For example, since

the file server is an isolated server, rather than being an

integral part of the operating system, it is possible for

users to implement new file servers for specialized

purposes (e.g. NFS, database). In conventional systems,

such as UNIX, adding additional user-defined file

systems is infeasible.

B. Threads

In many traditional operating systems, a process

consists of an address space and a single thread of
control. In Amoeba, each process has its own address

space, but it may contain multiple „„threads of control‟‟

(threads). Each thread has its own program counter and

its own stack, but shares code and global data with all

the other threads in its process.

Having multiple threads inside each process is

convenient for many purposes and fits into the model of

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

3

distributed and parallel computing very well. For

example, a file server may have multiple threads, each

thread initially waiting for a request to come in. When a

request comes in, it is accepted by some thread, which

then begins processing it. If that thread subsequently

blocks waiting for disk I/O, other threads can continue.

Despite their independent control, however, all the

threads can access a common block cache, using

semaphores to provide inter-thread synchronization.
This design makes programming servers and parallel

applications much easier. Not only are user processes

structured as collections of threads communicating by

RPC, but the kernel is as well. In particular, threads in

the kernel provide access to memory management

services.

C. Remote Procedure Call

Threads often need to communicate with one

another. Threads within a single process can just

communicate via the shared memory, but threads

located in different processes need a different

mechanism. The basic Amoeba communication
mechanism is the remote procedure call (RPC).

Communication consists of a client thread sending a

message to a server thread, then blocking until the

server thread sends back a return message, at which

time the client is unblocked.

To shield the naive user from these details, special

library procedures, called stubs, are provided to access

remote services. Amoeba has a special language called

Amoeba Interface Language (AIL) for automatically

generating these stub procedures. They marshal

parameters and hide the details of the communication
from the users.

D. Group Communication

For many applications, one-to-many communication

is needed, in which a single sender wants to send a

message to multiple receivers. For example, a group of

cooperating servers may need to do this when a data

structure is updated. It is also frequently needed for

parallel programming. Amoeba provides a basic facility

for reliable, totally-ordered group communication, in

which all receivers are guaranteed to get all group

messages in exactly the same order. This mechanism
simplifies many distributed and parallel programming

problems.

E. Objects and Capabilities

There are two fundamental concepts in Amoeba:

objects and capabilities. All services and

communication are built around them. An object is

conceptually an abstract data type. That is, an object is

a data structure on which certain operations are defined.

For example, a directory is an object to which certain

operations can be applied, such as „„enter name‟‟ and

„„look up name.‟‟ Amoeba primarily supports software

objects, but hardware objects also exist. Each object is

managed by a server process to which RPCs can be

sent. Each RPC specifies the object to be used, the

operation to be performed, and any parameters to be

passed. When an object is created, the server doing the

creation constructs a 128-bit value called a capability
and returns it to the caller. Subsequent operations on the

object require the user to send its capability to the

server to both specify the object and prove the user has

permission to manipulate the object. Capabilities are

protected cryptographically to prevent tampering. All

objects in the entire system are named and protected

using this one simple, transparent scheme.

F. Memory Management

The Amoeba memory model is simple and efficient.

A process‟ address space consists of one or more

segments mapped onto user-specified virtual addresses.

When a process is executing, all its segments are in
memory. There is no swapping or paging at present,

thus Amoeba can only run programs that fit in physical

memory. The primary advantage of this scheme is

simplicity and high performance. The primary

disadvantage is that it is not possible to run programs

larger than physical memory.

VI. SOFTWARE OUTSIDE THE KERNEL

The job of the Amoeba microkernel is to support

threads, RPC, memory management and I/O.

Everything else is built on top of these primitives.

A. Bullet File Server

The standard Amoeba file server has been designed

for high performance and is called the Bullet server. It

stores files contiguously on disk, and caches whole files

contiguously in core. Except for very large files, when a

user program needs a file, it will request that the Bullet

server send it the entire file in a single RPC. A

dedicated machine with at least 16 MB of RAM is

needed for the Bullet file server for installation (except

on the Sun 3 where there is a maximum of 12 MB). The

more RAM the better, in fact. The performance is

improved with a larger file cache. The maximum file

size is also limited by the amount of physical memory

available to the Bullet server.

B. Directory Server

In contrast to most other operating systems file

management and file naming are separated in Amoeba.

The Bullet server just manages files, but does not

handle naming. It simply reads and writes files,

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

4

specified by capabilities. A capability can be thought of

as a kind of handle for an object, such as a file. A

directory server maps ASCII strings onto capabilities.

Directories contain (ASCII string, capability) pairs;

these capabilities will be for files, directories, and other

objects. Since directories may contain capabilities for

other directories, hierarchical file systems can be built

easily, as well as more general structures. A directory

entry may contain either a single capability or a set of
capabilities, to allow a file name to map onto a set of

replicated files. When the user looks up a name in a

directory, the entire set of capabilities is returned, to

provide high availability. These replicas may be on

different file servers, potentially far apart (the directory

server has no idea about what kind of objects it has

capabilities for or where they are located). Operations

are provided for managing replicated files in consistent

way.

C. Compilers

Amoeba comes standard with compilers for ANSI

standard C, Pascal, Modula 2, BASIC, and Fortran 77.
Each of these comes with appropriate libraries. Amoeba

also comes with a collection of third-party software,

including the GNU C compiler.

D. Parallel Programming

A new language called Orca has been developed. It

is for parallel programming. Orca allows programmers

to create user-defined data types which processes on

different machines can share in a controlled way, in

effect simulating an object-based distributed shared

memory over a LAN. Operations on each object are

performed in such a way as to provide the illusion of
there being only a single copy, shared by all machines.

The Orca run-time system uses the Amoeba IPC

facilities to make sharing of software objects over the

network highly efficient.

E. TCP/IP

Although the basic communication mechanism in

Amoeba is the Amoeba FLIP protocol, a special server

is provided to allow TCP/IP communication, through

RPCs to the TCP/IP server. In this way, machines can

be accessed through the Internet.

F. XWindows

Amoeba‟s user interface is the industry standard X

Window System (X11R6). For X servers running on

workstations, a special version of X is available that

uses the Amoeba RPC for high-performance

communication. When hard-wired X terminals are used,

these can be interfaced using the TCP/IP server.

VII. NONTECHNICAL ASPECTS OF AMOEBA

A. Source Code Availability

All academic Amoeba distributions contain the

entire source code. Binaries for the supported machines

are also included.

B. Amoeba is unencumbered by AT&T licensing

Amoeba was written from scratch. Although it

provides a partial POSIX emulation, it contains no

AT&T code whatsoever. Furthermore, the utility

programs it comes with have either been written from

scratch or obtained from third parties under favorable

conditions. Although customers are required to agree to

our license, no additional licensing is needed for

Amoeba.

C. Machines on which amoeba runs

Amoeba currently runs on the following

architectures:

 Sun 4c and MicroSPARC SPARCstation

 Intel 386/486/Pentium/Pentium Pro (IBM AT

bus, PCI bus)

 68030 VME-bus boards (Force CPU-30)

Sun 3/60 & Sun 3/50 workstation

VIII. CONCLUSION

Amoeba is a modern distributed operating system

that is designed for an environment consisting of

multiple computers.

REFERENCES
 [1] Kaashoek, M.F., Renesse, R. van, Staveren, H. van, and

Tanenbaum,A.S.:"FLIP:an Internetwork Protocol for

Supporting Distributed Systems," ACM Trans. on Computer

Systems vol 11, pp. 73-106, Feb. 1993.

[2] Andrew S. Tanenbaum & Gregory J. Sharp Vrije

Universiteit “Amoeba Distributed Operating System”

UACEE International Journal of Computer Science and its Applications [ISSN 2250 - 3765]

