
International journal of Computer Science and its Applications

396

A Novel Grid Workflow Scheduling Using

Heuristics Based Approach

Lathigara Amit Maheshbhai
1
, Piyush V. Gohel

2
 , Jagruti D. Goswami

3
 and Nirav V. Bhatti

4

1
Research Scholar, Department of CSE,

Adhiyamaan College of Engineering, Hosur (Tamilnadu)

2
P.G.Scholar, Department of CSE,

NITTTR, Chandigarh

3
P.G. Scholar, Department of CSE,

RCW College, Jaipur, Rajasthan

4
Asst.Prof.,Department of MCA

RK University, Rajkot,Gujarat

Abstract - The advent of Grid environments made feasible the

solution of computational intensive problems in a reliable and

cost-effective way. As workflow systems carry out more complex

and mission-critical applications, Quality of Service (QoS)

analysis serves to ensure that each application meets user

requirements. In that frame, we present a novel Ant colony

algorithm with a quick convergence of ant to move from source

to destination which allows the mapping of workflow processes to

Grid provided services assuring at the same time end-to-end

provision of QoS (cost, makespan and reliability) based on user-

defined parameters and preferences. We also demonstrate the

operation of the implemented algorithm using seven different

heuristics and evaluate its effectiveness using a Grid scenario.

Keywords - Ant colony optimization (ACO), grid computing,

workflow scheduling.

I. INTRODUCTION

Grid computing [1] is increasingly considered as an

infrastructure able to provide distributed and heterogeneous

resources in order to deliver computational power to resource

demanding applications in a transparent way [2]. Built on

pervasive internet standards, Grids allow organizations to

share computing and information resources across department

and organizational boundaries in a secure and highly efficient

manner. Grids support the sharing, interconnection and use of

diverse resources, integrated in the framework of a dynamic

computing system.

When processing a computing application in grids,

we often regard the application as a workflow. Workflow is a

wide concept in technology. In grid environments, we can

define workflow as a collection of atomic tasks that are

processed in a specific order to accomplish a complicated goal

[3]. The workflow model based on loosely coupled

coordination of atomic tasks has become one of the most

attractive paradigms for grid computing applications [4].

One of the most challenging problems in grid

computing is to schedule the workflow to achieve high

performance. Usually, a workflow is given by a directed

acyclic graph (DAG) [5] in which the nodes represent

individual application tasks and the directed arcs stand for

precedence relations between the tasks. The scheduler has to

assign the tasks to heterogeneously distributed computing

sites to process with the objective to achieve the customers’

quality of service (QoS) requirements as well as to optimize

the performance. As scheduling in a DAG is NPcomplete [6]

in general, the workflow scheduling problem is complicated

and highly critical to the performance of a computational grid.

Fig. 1 Workflow representation with DAG

In the past few years, researchers have proposed

scheduling algorithms for parallel system [7 - 8]. However,

the problem of grid scheduling is still more complex than the

proposed solutions. Therefore, this issue attracts the interests

of the large number of researchers [9].

Current systems [10] of grid resource management

was surveyed and analyzed based on classification of

scheduler organization, system status, scheduling and

rescheduling policies. However, the characteristics and

various techniques of the existing grid scheduling algorithms

are still complex particularly with extra added components.

At the present time, job scheduling on grid

computing is not only aims to find an optimal resource to

improve the overall system performance but also to utilize the

existing resources more efficiently. Recently, many

researchers have been studied several works on job scheduling

on grid environment. Some of those are the popular heuristic

algorithms, which have been developed, are min-min [11], the

fast greedy [11], tabu search [11] and an Ant System [12].

The heuristic algorithms proposed for job scheduling

in [11] and [12] rely on static environment and the expected

value of execution times. H. Casanova et al. [13] and R.

Baraglia et al. [14] proposed the heuristic algorithms to solve

the scheduling problem based on the different static data, for

example, the execution time and system load. Unfortunately,

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

397

all of information such as execution time and workload cannot

be determined in advance of dynamic grid environments.

In 1999, the Ant Colony Optimization (ACO)

metaheuristic was proposed by Dorigo, Di Caro and

Gambardella, which has been successfully used to solve many

NP-problem, such as TSP, job shop scheduling, etc. In the

past few years, several researchers proposed solutions to solve

grid scheduling problem by using ACO.

Several studies have been trying to apply ACO for

solving grid scheduling problem. Z. Xu et al. [15] proposed a

simple ACO within grid simulation architecture environment

and used evaluation index in response time and resource

average utilization. E. Lu et al. [16] and H. Yan et al. [17] also

proposed an improved Ant Colony algorithm, which could

improve the performance such as job finishing ratio. However,

they have never used the various evaluation indices to

evaluate their algorithm.

This paper focuses on large-scale workflow

scheduling problems in a global grid environment with

various QoS parameters. In our model, three of the basic QoS

parameters are addressed: reliability, time, and cost. These

parameters are important for a grid application and their

characteristics are quite different.

II. PROBLEM STATEMENT

We focus on the scheduling module in this paper.

The scheduling problem involves a workflow application the

services of which can be implemented by different GSPs. For

the same service, GSPs charge higher price for short-

makespan implementation and lower price for long-makespan

implementation. The scheduling problem is to allocate each

service to a GSP so that the workflow can be done within the

users’ deadline requirements and the cost is minimized. The

objective of the scheduling algorithm is to find a schedule that

optimizes the user-preferred QoS parameter and satisfies all

QoS restrictions.

Generally, workflow applications can be modeled as

a directed acyclic graph (DAG) G = (V, A). Let n be the

number of services in the workflow. The set of nodes V = {S1,

S2, … , Sn} corresponds to the services of the workflow. The

set of arcs A represents precedence relations. An arc is in the

form of (Si,Sj), where Si is called the parent service of Sj, and

Sj is the child service of Si. Typically in a workflow, a child

service cannot be executed until all of its parent services have

been completed.

Each Task Ti (1 ≤ i ≤ n) has an implementation

domain Si = { , }, where (1 ≤ j ≤ mi)

represents a service instance provided by a GSP and mi is the

total number of available service instances for Ti. The

properties of a service instance can be denoted as a group of

four variables (.g, .r, .t, .c). .g means that the GSP

of . .r, .t and .c stand for reliability, execution time,

and cost of respectively.

III. ACO ALGORITHM FOR THE SCHEDULING

PROBLEM

In this paper, we apply the ant colony system (ACS)

algorithm, which is one of the best ACO algorithms by now,

to tackle the workflow scheduling problem in grid

applications. Informally, the algorithm can be viewed as the

interplay of the following procedures:

1) Initialization of algorithm: All pheromone values and

parameters are initialized at the beginning of the algorithm.

2) Initialization of ants: A group of M artificial ants are used

in the algorithm. In each iteration, each ant randomly selects a

constructive direction and builds a sequence of tasks.

3) Solution construction: M ants set out to build M solutions

to the problem based on pheromone and heuristic values using

the selection rule of the ACS algorithm.

4) Local pheromone updating: Soon after an ant maps a

service instance to task Ti, the corresponding pheromone

value is updated by a local pheromone updating rule.

5) Global pheromone updating: After all ants have completed

their solutions at the end of each iteration, pheromone values

corresponding to the best-so-far solution are updated by a

global pheromone updating rule.

6) Terminal test: If the test is passed, the algorithm will be

ended. Otherwise, go to step 2) to begin a new iteration.

A. Pheromone and Heuristic Information

Pheromone and heuristic information are the most

important factors of an ACO algorithm. In general,

pheromone is used to record the historical searching

experiences and bias the ants’ searching behavior in future.

On the other hand, heuristic information is some problem-

based values to guide the search direction of ants. As the

scheduling problem is mainly to map all tasks in the abstract

workflow to service instances to form a concrete workflow,

we denote the pheromone value of mapping service instance

 to task Ti as τij, and the heuristic information value of

mapping to task Ti as ηij.

At the beginning of the algorithm, we set all

pheromone

values to an initial value τ0 , i.e.,

τij = τ0, 1 ≤ i ≤ n, 1 ≤ j ≤ mi

Moreover, as there are multiple QoS parameters with

different characteristics in the considered model, we defined

seven heuristics for the algorithm as follows.

1) Heuristic A: Reliability Greedy (RG): The RG heuristic

biases the artificial ants to select the service instances with

higher reliabilities. Suppose that an ant’s heuristic type is the

RG heuristic, then the heuristic value of mapping to Ti

(denoted as RGij) is set to

ηij = RGij

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

398

where = and

 = According to above

equation, a service instance with higher reliability will be

associated with a higher heuristic value. It also certifies that

the value of ηij is normalized (0, 1]. The reason of adding 1

in both numerator and denominator is to prevent the case of

zero divided.

2) Heuristic B: Time Greedy (TG): The TG heuristic biases

the artificial ants to select the service instances with shorter

execution time. Suppose that an ant’s heuristic type is the TG

heuristic, then the heuristic value of mapping to Ti (denoted

as TGij) is set to

ηij = TGij =

where = and =

 According to above equation, a service

instance with shorter execution time will be associated with a

higher heuristic value and ηij (0, 1].

3) Heuristic C: Cost Greedy (CG): The CG heuristic biases

the artificial ants to select the service instances with lower

cost. Suppose that an ant’s heuristic type is the CG heuristic,

then the heuristic value of mapping to Ti (denoted as CGij)

is set to

ηij = CGij =

where = and =

 According to above equation, a service

instance with lower cost will be associated with a higher

heuristic value and ηij (0, 1].

4) Heuristic D: Suggested Deadline (SD): There are always

tradeoffs between QoS parameters. For example, a service

instance with shorter duration may have higher cost or lower

reliability. With the consideration of such tradeoffs and the

restriction of deadline, the SD heuristic biases the artificial

ants to select the just-in-time service instances. To achieve

this objective, we assign suggested deadlines to every task in

the abstract workflow based on the user defined deadline of

the application. Suppose that an ant’s heuristic type is the SD

heuristic, then the heuristic value of mapping to Ti

(denoted as SDij) is set to

ηij = SDij =

According to it, a service instance, the execution time of

which is closer to SDi, will be associated with a higher

heuristic value and ηij (0, 1].

5) Heuristic E: Suggested Budget (SB): Similar to the SD

heuristic, the SB heuristic biases the artificial ants to select the

service instances with just-within-budget cost. To achieve this

objective, for each task Ti, we assign a suggested budget SBi

based on the user-defined budget of the application.

Suppose that an ant’s heuristic type is the SB heuristic, then

the heuristic value of mapping to Ti (denoted as SBij) is set

to

ηij = SBij =

According to it, a service instance, the cost of which is closer

to SBi, will be associated with a higher heuristic value and ηij

 (0, 1].

6) Heuristic F: Time/Cost (TC): The TC heuristic considers

the effectiveness of both time and cost of a service instance. It

integrates the TG heuristic with the CG heuristic. Suppose that

an ant’s heuristic type is the TC heuristic, then the heuristic

value of mapping to Ti (denoted as TCij) is set to

ηij = TCij =

According to it, a service instance with shorter execution time

and lower cost will be associated with a higher heuristic value

and ηij to the interval (0, 1].

7) Heuristic G: Overall Performance (OP): The effectiveness

of all QoS parameters (including reliability, time, and cost) is

considered in the OP heuristic. It unites the TG, CG, and RG

heuristics together. Suppose that an ant’s heuristic type is the

OP heuristic, then the heuristic value of mapping to Ti

(denoted as OPij) is set to

ηij = OPij =

According to it, a service instance with shorter

execution time, lower cost, and higher reliability will be

associated with a higher heuristic value and ηij (0, 1].

Based on different user-defined QoS preferences, the

algorithm uses different heuristics. 1) If the objective of the

algorithm is to optimize reliability, the algorithm will use all

of these seven heuristics. Therein, the RG and OP heuristic are

used to find service instances with high reliability, and the

other heuristics are applied to ensure that the cost and

makespan of the schedule meet the QoS constraints. 2) If the

objective is to optimize makespan, only the TG, CG and TC

heuristic will be used. The TG and TC heuristic are used to

find the service instances with shorter execution time, and the

CG, and TC heuristic are used to search for the service

instances that satisfy the budget constraints. In this case,

reliability constraints can be achieved by simply not choosing

the service instances the reliability of which is lower than the

reliability constraint, so the RG and OP heuristic is not

needed. 3) If the objective is to optimize the cost, only the TG,

CG, and TC heuristic will be used.

B. Construction of Solution Schedules

In every iteration of the algorithm, a group of M ants sets out

to build solutions. The procedure of solution construction can

be divided into two steps.

1) Initialization of Ants: At the beginning of each iteration,

every ant randomly selects a constructive direction (forward

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

399

or backward). A forward ant will normally traverse the

workflow network in terms of the given precedence relations.

Oppositely, a backward ant will begin the searching from the

ending node of the DAG and reverse the directions of all arcs,

just as what we do when calculating the value of backward

earliest start time. The strategies of scheduling from both

directions enable the algorithm to explore more different

solutions for DAG-based scheduling problems, which have

been proven in [18].

2) Solution Construction: In this step,M artificial ants build M

solutions to the problem. Each ant maintains a building

process and all ants construct their solutions in parallel. In

each iteration, every ant iterates this selection scheme for N

times so that N tasks are mapped to N corresponding service

instances and a complete solution schedule is consequently

built. In some case, if the quality of a partial solution built by

an ant is already worse than the best-so-far ant, this partial

solution will be deserted. Each ant monitors and records the

QoS (Cost, Makespan and Reliability) parameters during the

construction of solution.

C. Pheromone Management

1) Pheromone Initialization: In the ACS algorithm, all

pheromone values are initially set to τo.

τo =

where, min_Reliability is the minimum reliability of all

service instances and max_Reliability = 100. min_Makespan is

the estimated minimum makespan of the workflow

application, and max_Makespan is the estimated maximum

makespan.

2) Local Pheromone Updating: In the ACS algorithm,

immediately after an ant has mapped a task Ti to a service

instance , the local pheromone updating rule is applied to

reduce the attraction of for the later ants. The local

pheromone updating rule is given by the following equation:

τij = τij + ρτ0

where, ρ within (0, 1) is a parameter. As τ0 is the minimum

value of all pheromone values, the function of the local

updating rule is to decrease the value of τij to enhance

diversity of the algorithm.

3) Global Pheromone Updating: Global updating takes place

after all ants have built their solutions.

IV. EXPERIMENTAL ANALYSIS

We first test the parameters of the ACS algorithm.

There are mainly three parameters in the algorithm: β and q0

in the pseudorandom proportion selection rule and ρ in the

pheromone updating rule. In our experiments, we set ρ = 0.1,

which is the same as the suggestion given by the traditional

ACS algorithm for traveling salesman problem (TSP). We

find that this configuration still performs well in the workflow

scheduling problem.

We simulated the result and during simulation,

resources with advanced reservation support have been

created as shown in Table-1. We proposed seven different

heuristics in the algorithm, including RG, TG, CG, SD, SB,

TC and OP. We simulated the algorithm and it was found to

be working efficiently and effectively. Experimental test

carried out for a 60 task as an input set to ascertain the

efficiency of the algorithm. We executed experiments to

compare the performance of these heuristic schemes and the

results are shown in Figs. 2 to 6 respectively.

Resource

Name in

Simulation

Simulated

Resource

Characteristics

Vendor, Resource

Type, Node OS, No

of PEs

Equivalent Resource

in World Wide Grid

(Hostname, Location)

A PE

SPEC/

MIPS

Rating

Resource

Manager

Type

Price

(G$/

PE

time

unit)

Resource_0 Compaq, Alpha

Server, CPU, OSF1,

4

grendel.vpac.org, VPAC,

Melbourne, Australia

515 ADVANCE

RESERVATION

8

Resource_1 Sun, Ultra, Solaris,

4

hpc420.hpcc.jp, AIST,

Tokyo, Japan

377 ADVANCE

RESERVATION

4

Resource_2 Sun, Ultra, Solaris,

4

hpc420-1.hpcc.jp, AIST,

Tokyo, Japan

377 ADVANCE

RESERVATION

3

Resource_3 Sun, Ultra, Solaris,

2

hpc420-2.hpcc.jp, AIST,

Tokyo, Japan

377 ADVANCE

RESERVATION

3

Resource_4 Intel, barbera.cnuce.cnr.it, 380 ADVANCE 2

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

400

Pentium/VC820,

Linux, 2

CNR, Pisa, Italy RESERVATION

Resource_5 SGI, Origin 3200,

IRIX, 6

onyx1.zib.de, ZIB,

Berlin, Germany

410 ADVANCE

RESERVATION

5

Resource_6 SGI, Origin 3200,

IRIX, 16

Onyx3.zib.de,

ZIB, Berlin, Germany

410 ADVANCE

RESERVATION

5

Resource_7 SGI, Origin 3200,

IRIX, 16

mat.ruk.cuni.cz,

Charles U., Prague,

Czech Republic

410 ADVANCE

RESERVATION

4

Resource_8 Intel,

Pentium/VC820,

Linux, 2

marge.csm.port.ac.uk,

Portsmouth, UK

380 ADVANCE

RESERVATION

1

Resource_9 SGI, Origin 3200,

IRIX, 4

green.cfs.ac.uk,

Manchester, UK

410 ADVANCE

RESERVATION

6

Resource_10 Sun, Ultra, Solaris,

8

pitcairn.mcs.anl.gov,

ANL, Chicago, USA

377 ADVANCE

RESERVATION

3

Table 1 WWG testbed resources used in simulation.

Iteration

Fig. 2a Performance of Cost in the case of Cost Greedy

Heuristic.

Iteration

Fig. 2b Performance of Makespan in the case of Cost Greedy

Heuristic.

Iteration

Fig. 3a Performance of Cost in the case of Time Greedy

Heuristic.

Iteration

Fig. 3b Performance of Makespan in the case of Time Greedy

Heuristic.

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

401

Iteration

Fig. 4a Performance of Cost in the case of Reliability Greedy

Heuristic.

Iteration

Fig. 4b Performance of Makespan in the case of Reliability

Greedy Heuristic.

Iteration

Fig. 5a Performance of Cost in the case of Time/Cost

Heuristic.

Iteration

Fig. 5b Performance of Makespan in the case of Time/Cost

Heuristic.

Iteration

Fig. 6a Performance of Cost in the case of Overall

Performance Heuristic.

Iteration

Fig. 6b Performance of Makespan in the case of Overall

Performance Heuristic.

V. CONCLUSION

A novel ant colony optimization with modified local

pheromone updating rule for a large-scale workflow

scheduling problem in computational grids has been proposed.

The scheduling algorithm is designed for workflow

applications in market driven or economy-driven grids under

the service-oriented architecture. In the algorithm, different

QoS parameters are considered, including reliability, time, and

cost. Users are allowed to define QoS constraints to guarantee

the quality of the schedule. Moreover, the optimizing

objective of the algorithm is based on the user-defined QoS

preferences. We proposed seven new heuristics for this

problem. Experimental results demonstrate the effectiveness

of the proposed algorithm.

ACKNOWLEDGMENT

The authors would like to thank the anonymous

reviewers for their constructive suggestions and insightful

comments that have helped enrich the content and improve the

presentation of this paper.

REFERENCES

[1] I. Foster, C. Kesselman, The Grid: Blueprint for a Future

Computing Infrastructure, Morgan Kaufmann Publishers,

USA, 1999.

[2] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the

Grid: Enabling scalable virtual organizations, International

Journal Supercomputer Applications 15 (3) (2001).

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

402

[3] D. Kyriazis et al., “An innovative workflow mapping

mechanism for grids in the frame of quality of service,”

Future Gen. Comput. Syst., to be published.

[4] R. Prodan and T. Fahringer, “Overhead analysis of

scientific workflows in grid environments,” IEEE Trans.

Parallel Distrib. Syst., to be published.

[5] Z. Shi and J. J. Dongarra, “Scheduling workflow

applications on processors with different capabilities,” Future

Gen. Comput. Syst., vol. 22, pp. 665–675, 2006.

[6] M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Completeness.

New York: Freeman, 1979.

[7] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C.

Sevcik, and P. Wong. “Theory and practice in parallel job

scheduling”, In 3
rd

 Workshop on Job Scheduling Strategies for

Parallel Processing, volume LNCS 1291, pages 1–34, 1997.

[8] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. “On

the design and evaluation of job scheduling algorithms”, In

5th Workshop on Job Scheduling Strategies for Parallel

Processing, volume LNCS 1659, pages 17–42, 1999.

[9] K. Li, “Job scheduling and processor allocation for grid

computing on Metacomputers ”, Journal of Parallel and

Distributed Computing, Elsevier, 2005

[10] K. Krauter, R. Buyya and M. Maheswaran, “A taxonomy

and survey of Grid resource management systems for

distributed computing”, SoftwarePract. Exp. 2 (2002) 135–

164.

[11] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B.

Yao, D. Hensgen and R. F. Freund (2001), “A Comparison of

Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems”,

Journal of Parallel and Distributed Computing. Vol.61(6):

Pages 810-837.

[12] G. Ritchie and J. Levine, “A fast, effective local search

for scheduling independent jobs in heterogeneous computing

environments”.

[13] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman,

“Heuristics for scheduling parameter sweep applications in

Grid environments”, in: Heterogeneous ComputingWorkshop

2000, IEEE Computer Society Press, 2000, pp. 349–363.

[14] R. Baraglia, R. Ferrini, and P. Ritrovato, “A static

mapping heuristics to map parallel applications to

heterogeneous computing systems”, Research articles.

Concurrency and Computation: Practice and Experience,

17(13):1579–1605, 2005.

[15] Z. Xu, X. Hou and J. Sun, “Ant Algorithm-Based Task

Scheduling in Grid Computing”, Electrical and Computer

Engineering, IEEE CCECE 2003, Canadian Conference,

2003.

[16] E. Lu, Z. Xu and J. Sun, “An Extendable Grid Simulation

Environment Based on GridSim”, Second International

Workshop, GCC 2003, volume LNCS 3032, pages 205–208,

2004.

[17] H. Yan, X. Shen, X. Li and M. Wu, “An Improved Ant

Algorithm for Job Scheduling in Grid Computing”, In

Proceedings of the Fourth International Conference on

Machine Learning and Cybernetics, 18-21 August 2005.

[18] D. Merkle, M. Middendorf, and H. Schmeck, “Ant

colony optimization for resource-constrained project

scheduling,” IEEE Trans. Evol. Comput., vol. 6, no. 4, pp.

333–346, Aug. 2002.

[ISSN 2250 - 3765]

