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Abstract - The advent of Grid environments made feasible the 

solution of computational intensive problems in a reliable and 

cost-effective way. As workflow systems carry out more complex 

and mission-critical applications, Quality of Service (QoS) 

analysis serves to ensure that each application meets user 

requirements. In that frame, we present a novel Ant colony 

algorithm with a quick convergence of ant to move from source 

to destination which allows the mapping of workflow processes to 

Grid provided services assuring at the same time end-to-end 

provision of QoS (cost, makespan and reliability) based on user-

defined parameters and preferences. We also demonstrate the 

operation of the implemented algorithm using seven different 

heuristics and evaluate its effectiveness using a Grid scenario. 

Keywords - Ant colony optimization (ACO), grid computing, 

workflow scheduling. 

 
I. INTRODUCTION 

Grid computing [1] is increasingly considered as an 

infrastructure able to provide distributed and heterogeneous 

resources in order to deliver computational power to resource 

demanding applications in a transparent way [2]. Built on 

pervasive internet standards, Grids allow organizations to 

share computing and information resources across department 

and organizational boundaries in a secure and highly efficient 

manner. Grids support the sharing, interconnection and use of 

diverse resources, integrated in the framework of a dynamic 

computing system. 

 

When processing a computing application in grids, 

we often regard the application as a workflow. Workflow is a 

wide concept in technology. In grid environments, we can 

define workflow as a collection of atomic tasks that are 

processed in a specific order to accomplish a complicated goal 

[3]. The workflow model based on loosely coupled 

coordination of atomic tasks has become one of the most 

attractive paradigms for grid computing applications [4]. 

 

One of the most challenging problems in grid 

computing is to schedule the workflow to achieve high 

performance. Usually, a workflow is given by a directed 

acyclic graph (DAG) [5] in which the nodes represent 

individual application tasks and the directed arcs stand for 

precedence relations between the tasks. The scheduler has to 

assign the tasks to heterogeneously distributed computing 

sites to process with the objective to achieve the customers’ 

quality of service (QoS) requirements as well as to optimize 

the performance. As scheduling in a DAG is NPcomplete [6] 

in general, the workflow scheduling problem is complicated 

and highly critical to the performance of a computational grid. 

 

Fig. 1 Workflow representation with DAG 

In the past few years, researchers have proposed 

scheduling algorithms for parallel system [7 - 8]. However, 

the problem of grid scheduling is still more complex than the 

proposed solutions. Therefore, this issue attracts the interests 

of the large number of researchers [9]. 

 

Current systems [10] of grid resource management 

was surveyed and analyzed based on classification of 

scheduler organization, system status, scheduling and 

rescheduling policies. However, the characteristics and 

various techniques of the existing grid scheduling algorithms 

are still complex particularly with extra added components. 

 

At the present time, job scheduling on grid 

computing is not only aims to find an optimal resource to 

improve the overall system performance but also to utilize the 

existing resources more efficiently. Recently, many 

researchers have been studied several works on job scheduling 

on grid environment. Some of those are the popular heuristic 

algorithms, which have been developed, are min-min [11], the 

fast greedy [11], tabu search [11] and an Ant System [12]. 

 

The heuristic algorithms proposed for job scheduling 

in [11] and [12] rely on static environment and the expected 

value of execution times. H. Casanova et al. [13] and R. 

Baraglia et al. [14] proposed the heuristic algorithms to solve 

the scheduling problem based on the different static data, for 

example, the execution time and system load. Unfortunately, 
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all of information such as execution time and workload cannot 

be determined in advance of dynamic grid environments. 

 

In 1999, the Ant Colony Optimization (ACO) 

metaheuristic was proposed by Dorigo, Di Caro and 

Gambardella, which has been successfully used to solve many 

NP-problem, such as TSP, job shop scheduling, etc. In the 

past few years, several researchers proposed solutions to solve 

grid scheduling problem by using ACO. 

 

Several studies have been trying to apply ACO for 

solving grid scheduling problem. Z. Xu et al. [15] proposed a 

simple ACO within grid simulation architecture environment 

and used evaluation index in response time and resource 

average utilization. E. Lu et al. [16] and H. Yan et al. [17] also 

proposed an improved Ant Colony algorithm, which could 

improve the performance such as job finishing ratio. However, 

they have never used the various evaluation indices to 

evaluate their algorithm. 

 

This paper focuses on large-scale workflow 

scheduling problems in a global grid environment with 

various QoS parameters. In our model, three of the basic QoS 

parameters are addressed: reliability, time, and cost. These 

parameters are important for a grid application and their 

characteristics are quite different. 

 

II. PROBLEM STATEMENT 

We focus on the scheduling module in this paper. 

The scheduling problem involves a workflow application the 

services of which can be implemented by different GSPs. For 

the same service, GSPs charge higher price for short-

makespan implementation and lower price for long-makespan 

implementation. The scheduling problem is to allocate each 

service to a GSP so that the workflow can be done within the 

users’ deadline requirements and the cost is minimized. The 

objective of the scheduling algorithm is to find a schedule that 

optimizes the user-preferred QoS parameter and satisfies all 

QoS restrictions. 

 

Generally, workflow applications can be modeled as 

a directed acyclic graph (DAG) G = (V, A). Let n be the 

number of services in the workflow. The set of nodes V = {S1, 

S2, … , Sn} corresponds to the services of the workflow. The 

set of arcs A represents precedence relations. An arc is in the 

form of (Si,Sj), where Si is called the parent service of Sj, and 

Sj is the child service of Si. Typically in a workflow, a child 

service cannot be executed until all of its parent services have 

been completed.  

 

Each Task Ti (1 ≤ i ≤ n) has an implementation 

domain Si = { , }, where  (1 ≤ j ≤ mi) 

represents a service instance provided by a GSP and mi is the 

total number of available service instances for Ti. The 

properties of a service instance can be denoted as a group of 

four variables ( .g, .r, .t, .c). .g means that the GSP 

of . .r, .t and .c stand for reliability, execution time, 

and cost of  respectively. 

 

III. ACO ALGORITHM FOR THE SCHEDULING 

PROBLEM 

In this paper, we apply the ant colony system (ACS) 

algorithm, which is one of the best ACO algorithms by now, 

to tackle the workflow scheduling problem in grid 

applications. Informally, the algorithm can be viewed as the 

interplay of the following procedures: 

1) Initialization of algorithm: All pheromone values and 

parameters are initialized at the beginning of the algorithm. 

2) Initialization of ants: A group of M artificial ants are used 

in the algorithm. In each iteration, each ant randomly selects a 

constructive direction and builds a sequence of tasks. 

3) Solution construction: M ants set out to build M solutions 

to the problem based on pheromone and heuristic values using 

the selection rule of the ACS algorithm. 

4) Local pheromone updating: Soon after an ant maps a 

service instance  to task Ti, the corresponding pheromone 

value is updated by a local pheromone updating rule. 

5) Global pheromone updating: After all ants have completed 

their solutions at the end of each iteration, pheromone values 

corresponding to the best-so-far solution are updated by a 

global pheromone updating rule. 

6) Terminal test: If the test is passed, the algorithm will be 

ended. Otherwise, go to step 2) to begin a new iteration. 

 

A. Pheromone and Heuristic Information 

Pheromone and heuristic information are the most 

important factors of an ACO algorithm. In general, 

pheromone is used to record the historical searching 

experiences and bias the ants’ searching behavior in future. 

On the other hand, heuristic information is some problem-

based values to guide the search direction of ants. As the 

scheduling problem is mainly to map all tasks in the abstract 

workflow to service instances to form a concrete workflow, 

we denote the pheromone value of mapping service instance 

 to task Ti as τij, and the heuristic information value of 

mapping  to task Ti as ηij. 

At the beginning of the algorithm, we set all 

pheromone 

values to an initial value τ0 , i.e., 

τij = τ0, 1 ≤ i ≤ n, 1 ≤ j ≤ mi 

Moreover, as there are multiple QoS parameters with 

different characteristics in the considered model, we defined 

seven heuristics for the algorithm as follows. 

 

1) Heuristic A: Reliability Greedy (RG): The RG heuristic 

biases the artificial ants to select the service instances with 

higher reliabilities. Suppose that an ant’s heuristic type is the 

RG heuristic, then the heuristic value of mapping  to Ti 

(denoted as RGij) is set to 

ηij = RGij  
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where  =  and 

 =  According to above 

equation, a service instance with higher reliability will be 

associated with a higher heuristic value. It also certifies that 

the value of ηij is normalized  (0, 1]. The reason of adding 1 

in both numerator and denominator is to prevent the case of 

zero divided. 

 

2) Heuristic B: Time Greedy (TG): The TG heuristic biases 

the artificial ants to select the service instances with shorter 

execution time. Suppose that an ant’s heuristic type is the TG 

heuristic, then the heuristic value of mapping  to Ti (denoted 

as TGij) is set to 

ηij = TGij =  

where  =  and  = 

 According to above equation, a service 

instance with shorter execution time will be associated with a 

higher heuristic value and ηij  (0, 1]. 

 

3) Heuristic C: Cost Greedy (CG): The CG heuristic biases 

the artificial ants to select the service instances with lower 

cost. Suppose that an ant’s heuristic type is the CG heuristic, 

then the heuristic value of mapping  to Ti (denoted as CGij) 

is set to 

ηij = CGij =  

where  =  and  = 

 According to above equation, a service 

instance with lower cost will be associated with a higher 

heuristic value and ηij  (0, 1]. 

 

4) Heuristic D: Suggested Deadline (SD): There are always 

tradeoffs between QoS parameters. For example, a service 

instance with shorter duration may have higher cost or lower 

reliability. With the consideration of such tradeoffs and the 

restriction of deadline, the SD heuristic biases the artificial 

ants to select the just-in-time service instances. To achieve 

this objective, we assign suggested deadlines to every task in 

the abstract workflow based on the user defined deadline of 

the application. Suppose that an ant’s heuristic type is the SD 

heuristic, then the heuristic value of mapping   to Ti 

(denoted as SDij) is set to 

ηij = SDij =  

According to it, a service instance, the execution time of 

which is closer to SDi, will be associated with a higher 

heuristic value and ηij  (0, 1]. 

 

5) Heuristic E: Suggested Budget (SB): Similar to the SD 

heuristic, the SB heuristic biases the artificial ants to select the 

service instances with just-within-budget cost. To achieve this 

objective, for each task Ti, we assign a suggested budget SBi 

based on the user-defined budget of the application. 

Suppose that an ant’s heuristic type is the SB heuristic, then 

the heuristic value of mapping   to Ti (denoted as SBij) is set 

to 

ηij = SBij =  

According to it, a service instance, the cost of which is closer 

to SBi, will be associated with a higher heuristic value and ηij 

 (0, 1]. 

 

6) Heuristic F: Time/Cost (TC): The TC heuristic considers 

the effectiveness of both time and cost of a service instance. It 

integrates the TG heuristic with the CG heuristic. Suppose that 

an ant’s heuristic type is the TC heuristic, then the heuristic 

value of mapping   to Ti (denoted as TCij) is set to 

ηij = TCij =  

According to it, a service instance with shorter execution time 

and lower cost will be associated with a higher heuristic value 

and ηij to the interval (0, 1]. 

 

7) Heuristic G: Overall Performance (OP): The effectiveness 

of all QoS parameters (including reliability, time, and cost) is 

considered in the OP heuristic. It unites the TG, CG, and RG 

heuristics together. Suppose that an ant’s heuristic type is the 

OP heuristic, then the heuristic value of mapping   to Ti 

(denoted as OPij) is set to 

ηij = OPij =  

 

According to it, a service instance with shorter 

execution time, lower cost, and higher reliability will be 

associated with a higher heuristic value and ηij  (0, 1]. 

 

Based on different user-defined QoS preferences, the 

algorithm uses different heuristics. 1) If the objective of the 

algorithm is to optimize reliability, the algorithm will use all 

of these seven heuristics. Therein, the RG and OP heuristic are 

used to find service instances with high reliability, and the 

other heuristics are applied to ensure that the cost and 

makespan of the schedule meet the QoS constraints. 2) If the 

objective is to optimize makespan, only the TG, CG and TC 

heuristic will be used. The TG and TC heuristic are used to 

find the service instances with shorter execution time, and the 

CG, and TC heuristic are used to search for the service 

instances that satisfy the budget constraints. In this case, 

reliability constraints can be achieved by simply not choosing 

the service instances the reliability of which is lower than the 

reliability constraint, so the RG and OP heuristic is not 

needed. 3) If the objective is to optimize the cost, only the TG, 

CG, and TC heuristic will be used. 

 

B. Construction of Solution Schedules 

In every iteration of the algorithm, a group of M ants sets out 

to build solutions. The procedure of solution construction can 

be divided into two steps. 

 

1) Initialization of Ants: At the beginning of each iteration, 

every ant randomly selects a constructive direction (forward 
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or backward). A forward ant will normally traverse the 

workflow network in terms of the given precedence relations. 

Oppositely, a backward ant will begin the searching from the 

ending node of the DAG and reverse the directions of all arcs, 

just as what we do when calculating the value of backward 

earliest start time. The strategies of scheduling from both 

directions enable the algorithm to explore more different 

solutions for DAG-based scheduling problems, which have 

been proven in [18]. 

 

2) Solution Construction: In this step,M artificial ants build M 

solutions to the problem. Each ant maintains a building 

process and all ants construct their solutions in parallel. In 

each iteration, every ant iterates this selection scheme for N 

times so that N tasks are mapped to N corresponding service 

instances and a complete solution schedule is consequently 

built. In some case, if the quality of a partial solution built by 

an ant is already worse than the best-so-far ant, this partial 

solution will be deserted. Each ant monitors and records the 

QoS (Cost, Makespan and Reliability) parameters during the 

construction of solution. 

 

C. Pheromone Management 

1) Pheromone Initialization: In the ACS algorithm, all 

pheromone values are initially set to τo.  

τo =  

where, min_Reliability is the minimum reliability of all 

service instances and max_Reliability = 100. min_Makespan is 

the estimated minimum makespan of the workflow 

application, and max_Makespan is the estimated maximum 

makespan.  

2) Local Pheromone Updating: In the ACS algorithm, 

immediately after an ant has mapped a task Ti to a service 

instance   , the local pheromone updating rule is applied to 

reduce the attraction of   for the later ants. The local 

pheromone updating rule is given by the following equation: 

τij =  τij + ρτ0 

where, ρ within (0, 1) is a parameter. As τ0 is the minimum 

value of all pheromone values, the function of the local 

updating rule is to decrease the value of τij to enhance 

diversity of the algorithm. 

3) Global Pheromone Updating: Global updating takes place 

after all ants have built their solutions. 

 

IV. EXPERIMENTAL ANALYSIS 

We first test the parameters of the ACS algorithm. 

There are mainly three parameters in the algorithm: β and q0 

in the pseudorandom proportion selection rule and ρ in the 

pheromone updating rule. In our experiments, we set ρ = 0.1, 

which is the same as the suggestion given by the traditional 

ACS algorithm for traveling salesman problem (TSP). We 

find that this configuration still performs well in the workflow 

scheduling problem. 

 

We simulated the result and during simulation, 

resources with advanced reservation support have been 

created as shown in Table-1. We proposed seven different 

heuristics in the algorithm, including RG, TG, CG, SD, SB, 

TC and OP. We simulated the algorithm and it was found to 

be working efficiently and effectively. Experimental test 

carried out for a 60 task as an input set to ascertain the 

efficiency of the algorithm. We executed experiments to 

compare the performance of these heuristic schemes and the 

results are shown in Figs. 2 to 6 respectively. 

 

 

 

 

 

 

 

 

 

 

Resource 

Name in 

Simulation 

Simulated 

Resource 

Characteristics 

Vendor, Resource 

Type, Node OS, No 

of PEs 

Equivalent Resource 

in World Wide Grid 

(Hostname, Location) 

A PE 

SPEC/ 

MIPS 

Rating 

Resource 

Manager 

Type 

Price 

(G$/ 

PE 

time 

unit) 

Resource_0 Compaq, Alpha 

Server, CPU, OSF1, 

4 

grendel.vpac.org, VPAC, 

Melbourne, Australia 

515 ADVANCE 

RESERVATION 

8 

Resource_1 Sun, Ultra, Solaris, 

4 

hpc420.hpcc.jp, AIST, 

Tokyo, Japan 

377 ADVANCE 

RESERVATION 

4 

Resource_2 Sun, Ultra, Solaris, 

4 

hpc420-1.hpcc.jp, AIST, 

Tokyo, Japan 

377 ADVANCE 

RESERVATION 

3 

Resource_3 Sun, Ultra, Solaris, 

2 

hpc420-2.hpcc.jp, AIST, 

Tokyo, Japan 

377 ADVANCE 

RESERVATION 

3 

Resource_4 Intel, barbera.cnuce.cnr.it, 380 ADVANCE 2 
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Pentium/VC820, 

Linux, 2 

CNR, Pisa, Italy RESERVATION 

Resource_5 SGI, Origin 3200, 

IRIX, 6 

onyx1.zib.de, ZIB, 

Berlin, Germany 

410 ADVANCE 

RESERVATION 

5 

Resource_6 SGI, Origin 3200, 

IRIX, 16 

Onyx3.zib.de, 

ZIB, Berlin, Germany 

410 ADVANCE 

RESERVATION 

5 

Resource_7 SGI, Origin 3200, 

IRIX, 16 

mat.ruk.cuni.cz, 

Charles U., Prague, 

Czech Republic 

410 ADVANCE 

RESERVATION 

4 

Resource_8 Intel, 

Pentium/VC820, 

Linux, 2 

marge.csm.port.ac.uk, 

Portsmouth, UK 

380 ADVANCE 

RESERVATION 

1 

 

 

Resource_9 SGI, Origin 3200, 

IRIX, 4 

green.cfs.ac.uk, 

Manchester, UK 

410 ADVANCE 

RESERVATION 

6 

Resource_10 Sun, Ultra, Solaris, 

8 

pitcairn.mcs.anl.gov, 

ANL, Chicago, USA 

377 ADVANCE 

RESERVATION 

3 

Table 1 WWG testbed resources used in simulation. 

 
Iteration  

Fig. 2a Performance of Cost in the case of Cost Greedy 

Heuristic. 

 
Iteration 

Fig. 2b Performance of Makespan in the case of Cost Greedy 

Heuristic. 

 
Iteration 

Fig. 3a Performance of Cost in the case of Time Greedy 

Heuristic. 

 
Iteration 

Fig. 3b Performance of Makespan in the case of Time Greedy 

Heuristic. 
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Iteration 

Fig. 4a Performance of Cost in the case of Reliability Greedy 

Heuristic. 

 

 
Iteration 

Fig. 4b Performance of Makespan in the case of Reliability 

Greedy Heuristic. 

 
Iteration 

Fig. 5a Performance of Cost in the case of Time/Cost 

Heuristic. 

 
Iteration 

Fig. 5b Performance of Makespan in the case of Time/Cost 

Heuristic. 

 
Iteration 

Fig. 6a Performance of Cost in the case of Overall 

Performance Heuristic. 

 
Iteration 

Fig. 6b Performance of Makespan in the case of Overall 

Performance Heuristic. 

V. CONCLUSION 

A novel ant colony optimization with modified local 

pheromone updating rule for a large-scale workflow 

scheduling problem in computational grids has been proposed. 

The scheduling algorithm is designed for workflow 

applications in market driven or economy-driven grids under 

the service-oriented architecture. In the algorithm, different 

QoS parameters are considered, including reliability, time, and 

cost. Users are allowed to define QoS constraints to guarantee 

the quality of the schedule. Moreover, the optimizing 

objective of the algorithm is based on the user-defined QoS 

preferences. We proposed seven new heuristics for this 

problem. Experimental results demonstrate the effectiveness 

of the proposed algorithm. 
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