
International Journal of Computer Science and its Applications

352

A DIVIDE AND CONQUER STRATEGY FOR IMPROVING THE
EFFICIENCY AND PROBABILITY SUCCESS IN SORTING

S. Muthusundari Dr. S. SanthoshBaboo
Research Scholar Reader, Dept of Computer Science
Sathyabama University D .G. Vaishnav College
Chennai, India Chennai, India
nellailath@yahoo.co.in santhos2001@sify.com

Abstract - Any number of practical applications in

computing requires things to be in order. The
performance of any computation depends upon the
performance of sorting algorithms. Like all
complicated problems, there are many solutions that
can achieve the same results. One sort algorithm can
do sorting of data faster than another. A lot of sorting
algorithms has been developed to enhance the
performance in terms of computational complexity,
memory and other factors. In this paper, the basic idea
is to prove the divide and conquer strategy is an
efficient technique and probability success for better
performance of sorting. In this paper, we do the
comparative study the mathematical results of various
sorting were verified experimentally on randomly
generated unsorted numbers.To have some
experimented data to sustain this we compare four
different sorting methods were chosen and code was
executed and execution time was noted to verify and
analyze the performance. At last the divide and
conquer strategy performance was found better than
other sorting methods.

Keywords: Sorting, Divide and conquer, efficient

and probability success.

I. INTRODUCTION

that puts elements of a list in a certain orIn

computer science and mathematics, a sorting

algorithm is an algorithm der. The most use

orders are numerical order and lexicographical

order [1]. Efficient sorting is important to

optimizing the use of other algorithms (such as

search and merge algorithms) that require sorted

list to work correctly; is also often useful for

producing human readable output. Sorting

algorithms are classified by several other criteria

such as computational complexity (worst,

average and best number of comparisons for

several typical test cases) in terms of the size of

the list, stability (memory usage and use of other

computer resources), the difference between and

average behavior, behaviors’ on practically

important data sets (completely sorted, inversely

sorted and almost sorted).

Sorting is the rearrangement of things

in a list into their correct lexicographic order. A

number of sorting algorithms have been

developed like include heap sort , merge sort,

quick sort, selection sort all of which are

comparison based sort .There is another class of

sorting algorithms which are non comparison

based sort. This paper gives the brief

introduction about sorting algorithms [2] where

it discuss about the class of sorting algorithms

and their running times. In this paper, we

compare the different sorting methods and its

algorithmic approach to be discussed. And its

efficiency and their computational performance

is analyzed and then we conclude the approach

of divide and conquer strategy is better

performance than any other technique for the

success rate on sorting. The well known

existing sorting techniques such as bubble sort,

quick sort, insertion sort and Merge sort is

considered.

Sorting is one of the basic operations that are

performed by many computers since handling

the data in a certain order is more efficient than

handling the randomized data [3]. There are

different kinds of sorting algorithms .Some of

the common sorting algorithms are described

below.

A. BUBBLE SORT

[ISSN 2250 - 3765]

mailto:nellailath@yahoo.co.in

International Journal of Computer Science and its Applications

353

Bubble sort [5] is the pioneer among all the

sorting techniques, the simplest and popular one

in fact. It takes a list compare the two items at a

time and swaps them if they are not sorted,

repeat the steps until the one of the compared

item reaches itsexact location in that list, these

whole steps continue till noswapping isrequired

more and this is the time when sorting is

completed. It compares the first two elements

and if the first is greater than second, it swaps

them. It continues doing this for each pair of

adjacent elements to the end of the data set. It

then starts again with the first two elements,

repeating until no swaps have occurred on the

last pass. While simple, this algorithm is highly

inefficient and is rarely used except in education.

Average and worst case complexity of bubble

sort is O (n^2).

B. INSERTION SORT

Insertion sort is a simple sorting algorithm, a

comparison sort in which the sorted array is built

one entry at a time. This sort is relatively

efficient for small lists and mostly sorted list,

and often is used as part of more sophisticated

algorithms [4]. It works by taking elements from

the list one by one and inserting them in their

correct positions in to new sorted lists.

C. QUICK SORT

Quick sort is another well known sorting

algorithm and base on divide and conquer

paradigm. Its worst case running time is O(n^2)

having a list of n items. In spite of slow worst

case running time, quick sort is often the best

practical choice for sorting the lists because it is

extremely efficient on the average running time

i.e. O (nlogn) [6].

Quick sort is divide and conquer algorithm

which relies on a partition operation; to partition

an array, we choose an element, called a pivot,

move all smaller elements before the pivot and

move all greater elements after it. This can be

done efficiently in linear time and in-place. The

pivot then it works in O (n log n).

D. MERGE SORT

Merge sort is divide and conquer algorithm.

Merge sort [7] takes advantage of the ease of

merging already sorted list into a new sorted list.

It starts by comparing two elements (i.e., 1 with

2, then 3 with 4…) andswapping them if the first

should come after the second. It then merges

each of the resulting listsof two intolist offour,

than merges those lists of four and so on, until at

last two lists are merged into the final sorted list.

The worst case running time is O (n log n).

II.METHODS AND MATERIALS

In this section, we describe some of the existing

sorting algorithms and their methods to sort the

lists. Let us describe the four famous sorting

techniques such as Bubble sort, Insertion sort,

Quick sort and Merge sort.

Sorting algorithms used in computer science are

often classified by:

 Computational complexity of element

comparisons in terms of size of the list.

 Computational complexity of swaps

 Memory usage

 Recursion

 Stability

 General method: insertion, exchange, selection,

merging and divide and conquer and

partitioning.

 Generally Exchange sort includes bubble sort

and cocktail sort. Selection includes selection

sort, shaker sort and heap sort. Merging includes

merge sort. Partitioning includes quick sort.

Divide and conquer includes Merge sort and

Quick sort [8].

DIVIDE AND CONQUER

In Computer science, divide and conquer (D&C)

is an important algorithm design paradigm. It

works by recursively breaking down a problem

into two or more sub – problems of the same

[ISSN 2250 - 3765]

International Journal of Computer Science and its Applications

354

type, until these become simple enough to be

solved directly. The solutions to the sub –

problems are then combined to give a solution to

the original problem. A divide and conquer is

closely tied to t type of recurrence relation

between functions of the data in question: data is

“divided” into smaller partitions and the result

calculated thence.

 This technique is the basis of efficient

algorithms for all kinds of problems, such as

sorting (quick sort, merge sort) and the

discrete Fourier transform (FFTs). Some of the

advantages of divide and conquer are as follows:

 Solving difficult problems

 Algorithm efficiency

 Memory access

 Parallelism

There are a number of general and powerful

computational strategies that are repeatedly used

in computer science. It is often possible to phrase

any problem in terms of these general strategies.

These general strategies are Divide and Conquer,

Dynamic Programming.

 The most widely known and often used of

these is the divide and conquer strategy.

 The basic idea of divide and conquer is to

divide the original problem into two or more

sub-problems which can be solved by the same

technique. If it is possible to split the problem

further into smaller and smaller sub-problems, a

stage is reached where the sub-problems are

small enough to be solved without further

splitting. Combining the solutions of the

individuals we get the final conquering.

Combining need not mean, simply the union of

individual solutions.

SOME LIST OF SORTING ALGORITHM
WITH ITS TECHNIQUES

II. PSEUDO CODE

Divide-and-Conquer Algorithm

Divide-and-conquer is a top-down technique for

designing algorithms that consists ofdividing the

problem into smaller sub problems hoping that

the solutions of the Sub problems are easier to

find and then composing the partial solutions

into the Solution of the original problem.

Little more formally, divide-and-conquer

paradigm consists of following majorphases:

• Breaking the problem into several sub-

problems those are similar to the original

problem but smaller in size,

• Solve the sub-problem recursively

(successively and independently), and then

• Combine these solutions to sub problems to

create a solution to the original problem.Divide

and Conquer involves four steps

1. Divide

2. Conquer [Initial Conquer occurred due to

solving]

3. Combine

4. Conquer [Final Conquer].

 In precise, forward journey is divide and

backward journey is Conquer. A general binary

divide and conquer algorithm is :

Procedure D&C (P,Q) //the data size is from p to

q

{

If size(P,Q) is small Then

NAME OF THE

SORT

RECURRENCE

RELATION

METHOD

BUBBLE SORT O(n^2) Exchanging

INSERTION

SORT

O(N^2) Insertion

QUICK SORT O(N LOG N) Partitioning,

divide & conquer

MERGE SORT O(n log n) Divide & conquer,

merging

Selection Sort O(n^2) selection

HEAP SORT O(n log n) selection

Cocktail sort O(n^2) Exchanging

[ISSN 2250 - 3765]

International Journal of Computer Science and its Applications

355

Solve(P,Q)

Else

M ¬ divide(P,Q)

Combine (D&C(P,M), D&C(M+1,Q))

}

IV.COMPARATIVE ANALYSIS

In this previous section, Bubble sort, Insertion

sort, Quick sort and Merge sort algorithms and

their methods were described. The performance

metric in all the experiments is the total

execution time taken and the number of

comparisons taken by the sorting operation [9].

 The experiments were conducted in two

categories

Category 1:

 Number of Comparisons made for a random

data set

Category 2:

 Average computing time taken for a
random data set

For the experiments integer numbers have been

used which were generated randomly. To obtain

results data files were used. To study the

performance of the algorithms generated data

sets with 50 to 500 items were used and code

was executed 50 times and average execution

time and number of comparisons were recorded

in C language.

Table 1

NUMBER OF COMPARISONS MADE FOR RANDOM

DATA SET

Sort/eleme
nts

50 100 200 300 400 500

Bubble

sort

141

0

533

5

2030

0

4565

0

7986

6

1265

85

Insertion
sort

139
1

539
9

2047
3

4444
9

7877
9

1237
15

Quick sort 399 990 1954 3384 5066 6256

Merge sort 500 114

0

2154 3685 6543 7349

Table 2

COMPARING THE AVERAGE COMPUTING TIME FOR
FOUR SORTING ALGORTIHMS

Sort/element

s

100

0

150

0

200

0

250

0

300

0

350

0

Bubble sort 174
1

261
2

348
4

435
4

522
5

609
6

Insertion

sort

169

1

265

0

350

0

430

0

520

0

598

7

Quick sort 400 600 850 105
0

130
0

150
0

Merge sort 500 750 105

0

140

0

165

0

200

0

[ISSN 2250 - 3765]

International Journal of Computer Science and its Applications

356

Results of Category 1 are shown in Table 1. It

shows the number of comparisons of all the four

algorithms for the no. of data items ranging from

50 to 500. It is observed that the Quick sort takes

very less comparisons than other sorting

algorithms. The next efficient is observed that

Merge sort takes less than the other sorting

algorithms. From the table 1 the greater number

of comparison takes Bubble sort and the next is

Insertion sort. The methods in the sorting

algorithms were already described in section III.

The algorithm uses the divide and conquer

technique which yields efficient performance

than the other methods in sorting algorithms.

Results of Category 2 are shown in Table 2. It

shows the execution times of all the four

algorithms for no. of elements ranging from

1000 to 3500. It is observed that Quick sort takes

less time than other sorting algorithms. The next

place takes merge sort for less time. The greatest

time taken by Bubble sort and the next place

takesInsertion Sort. Hence it is observed that the

sorting algorithms which uses the divide and

conquer technique that shows efficient and

probabilistic success than any other methods in

sorting.

V. CONCLUSIONS

This paper presented the comparative
performance study of four sorting algorithms. To
study the effectiveness of the algorithms, we
have implemented all the four sorting methods.
From the above graph is mentioned, we prove
that the performance of Quick sort and merge

sort is more efficient than the other two existing
sorting algorithms. As we have described the
methods used for all the four sorting algorithms
in section III.

 The result of this paper shows that the Quick
sort and merge sort techniques are efficient one.
The worst performance algorithms are
considered as Bubble sort and Insertion sort.
Normally the efficient of the algorithms which
have already proven by using divide and conquer
technique in section III described. Bubble sort
uses the Exchange method and Insertion sort
uses Insertion method for the algorithmic
approach.

Quick sort and merge sort uses the divide and
conquer method to order the list. Hence the
efficient also proven in this paper. The result
also proven Quick sort and merge sort are the
efficient sorting methods because of using the
approach Divide and conquer. Hence the
efficient sorting techniques with only by
obtained using divide and conquer method.

 Though there are other sorting algorithms but
the graph of total time and number of
comparisons taken by different sorting
algorithms confirms the methods used as divide
and conquer technique is superiority of all the
other existing similar algorithms. Hence we have
also proved the efficiency and probabilistic
success by using the divide and conquer
technique in sorting. Sorting takes a vital role in
many other applications in database management
systems, file retrieval systems and networking
theory wherever we have to consider all possible
data sets.

 Our future work comprises of
presenting more sorting algorithms which
includes divide and conquer techniques for
decreasing its time bound and specific
applications [10].

REFERENCES

[1]ThomasH.Cormen, Charles, E.Leiserson, RonaldL.Rivest,
CLIffordStein, Introduction to Algorithms, Second Edition,
Prentice-Hall, NewDelhi, 2004

[2]AnanthGrama,AnshulGupta,GeorgeKarypis,VipinKumar,I
ntoduction to Parallelcomputing,SecondEdition,Addison-
Wesley

[3]Wikipedia,SortingAlgorithm,
http://en.wikipedia.org/wiki/Sorting_algorithm, Current:
2007-04-24

[4]MichaelLamont,SortingAlgorithms,http://linux.wku.edu/~l

[ISSN 2250 - 3765]

http://en.wikipedia.org/wiki/Sorting_algorithm

International Journal of Computer Science and its Applications

357

amonml/algor/sort/sort.html, Cuttent: 2007-04-24

[5]Wikipedia,BubbleSort,
http://en.wikipedia.org/wiki/Bubble_sort, Current: 2007-04-
24

[6]Wikipedia,QuickSort,
http://en.wikipedia.org/wiki/Quick_sort, Current: 2007-04-24

[7] Robert Lafore, Data Structures and Algorithms inJava,
Second Addition, 2002.

 [8] McCauley, P.B., Sorting methods and Apparatus, U. S.

Patent 4, 809, 159, 1989

 [9] Wainwright, R. 1985. A class of sorting algorithm

based on Quick sort. ACM 28(4), 396-402.

 [10] Cook, R. and Kim, J. 1990. Best sorting algorithms
for nearly sorted list ACM, 23, 620 – 624.

[ISSN 2250 - 3765]

