
International Journal Of Computer SCiecne and its Applications

286

TEST CASE SELECTION & PRIORITIZATION

USING ANT COLONY OPTIMIZATION

Bharti Suri

Computer Science Department

Assistant Professor, USIT, GGSIPU

New Delhi, India

bhartisuri@gmail.com

Shweta Singhal

Information Technology Department

Research Student, USIT, GGSIPU

New Delhi, India

shweta_niec@yahoo.co.in

Abstract — Regression testing is a crucial and often

costly software maintenance activity. In order to regain

confidence in correctness of the system whenever

modifications are made, we retest the software using

existing test suite. But regression test suites are often too

large to re-execute in the given time and cost constraints

and thus we use test case selection and prioritization

techniques. Ant Colony Optimization is a meta-heuristic

approach that has been applied for time-constraint test

case selection and prioritization. We performed an

experiment to evaluate the effectiveness of the proposed

algorithm and compared it with other techniques using

APFD metrics. Our results highlight close proximity to

optimal solution and show the time reduction achieved by

this technique.

Keywords - Regression Testing, Test case selection, Test case

prioritization, Ant colony optimization.

I. INTRODUCTION

To cope up with the ever changing and demanding IT
environment, we need to modify our software in its
maintenance phase. After modifications are made, we need to
retest the software using existing test suite so that we regain the
confidence in correctness of our system. This is called
Regression testing. Regression test suites being too large to re-
execute in the given time and cost constraints are reduced or re-
ordered. This can be achieved by using one or more of the three
techniques, Test case selection, minimization or prioritization.
Test Case Prioritization is the reordering of the test suite
according to an appropriate criterion like code, branch,
condition and fault coverage etc. [1]. We can also select a
subset of the original test suite on the basis of some criteria,
often called as Regression Test Selection [2]. Or using Test
case minimization we can identify and remove the redundant
test cases [3]. Considering the cost of executing a test case,
many cost-aware prioritization techniques have been proposed
[4, 5, 6]. Taking time as cost, Time-Aware test suite
prioritization was proposed by Walcott [4]. It uses execution
time of the test cases as a parameter for test case prioritization
in addition to Fault Executing Potential (FEP) criteria.
Execution time acts as the cost of executing the test case.
Prioritization of test cases is then done according to maximum

FEP and minimum cost of execution. Time constrained test
case prioritization problem has been reduced to zero/one
knapsack problem which is NP-complete [4]. Thus, techniques
that solve combinatorial optimization problems can be applied
to time constrained prioritization of test cases.

Many techniques have been used for selecting and
prioritization according to one or more of the chosen criteria(s).
Ant Colony Optimization (ACO) is a technique that was used
by Singh et al. [7] for solving Time-Constrained Test Case
Selection and Prioritization problem using Fault Exposing
Potential (FEP) criteria. ACO is a nature inspired technique
proposed by Dorigo et al [8] for solving combinatorial
optimization problems. Recently many nature inspired
algorithms are being applied to solve optimization problems.
ACO is an approach based on the real life of ants, precisely on
their food source searching process as described in later
sections of the paper.

In this paper, time and space complexity of the proposed
algorithm [7] has been computed which provided further
motivation to implement the technique. The work of
implementation of the proposed algorithm and its analysis for
forty runs of the tool on two sample programs has been shown.
The analysis demonstrates the usefulness and effectiveness of
using ACO technique for test suite selection and prioritization.
Analysis of the technique highlights assurance of 100% fault
coverage whether ordering is optimal or not. A comparison has
also be done against the no order, random order, reverse order
and optimal order prioritization shown using APFD metric.
This also proves the closeness of selection and prioritization
using ACO with the optimal ordering..

II. ANT COLONY OPTIMIZATION

It is an astonishing discovery of entomologists that the real
power of ants resides in their colony brain [9]. Ants are blind
and they communicate within the colony by the use of a
chemical substance called pheromone. As ants move from
their nest to food source and vice-versa, they deposit the
pheromone trail on that path. This pheromone trail is then
smelled by other ants which tend to follow the path with
maximum pheromone trail. Point of our interest is that, an ant
reaches the food source and comes back to its nest. Thus, the
ant on the shortest path is also the earliest to return, depositing
more amount of

[ISSN 2250 - 3765]

mailto:bhartisuri@gmail.com
mailto:shweta_niec@yahoo.co.in

International Journal Of Computer SCiecne and its Applications

287

Figure 1. ACO Example. Above the path shown are the ants that follow the

path and their pheromone trail is shown below the path

pheromone on that path (while going and returning to the
nest). This increases the probability of other ants following
this path [8]. The ants following this path will again lay more
pheromone on the path. Thus even more ants tend to follow
this path and continuing the process, ultimately all ants
converge to the shortest or the best path.

This process of ants converging to the shortest path is
illustrated in the example shown in fig. 1. There are three
possible paths (P1, P2, P3) from ant nest to the food source.
Initially an ant can choose any of the three paths. After
collecting the food from source ants also come back to their
nests. Thus the ant on the shortest path is also the first one to
return to the nest, which implies that more amount of
pheromone is deposited on this path. New ants starting from
the nest would tend to follow this path and deposit more
pheromone. Finally, it is observed that all the ants converge to
the best path (P2 in the fig. 1) and this path has the maximum
pheromone trail deposited. This phenomenon of finding the
best shortest path by a colony of ants is known as Ant Colony
Optimization.

Derived from this real behavior of ants, Dorigo proposed
Ant Colony Optimization (ACO) in the year 2006[8]. This
technique has already been used in solving various
combinatorial optimization problems such as knapsack
problem, travelling salesman problem, distributed networks,
data mining, telecommunication networks, vehicle routing,
test data generation [8, 10, 11, 12, 13, 14, 15, 16] etc. As
proposed by Singh et al [7], ACO can be applied to time
constraint test suite selection and prioritization.

III. TEST SUITE SELECTION & PRIORITIZATION USING ACO

A. Description of the Technique

Suppose „T‟ = {t1, t2……tn} is the set of all „n‟ number of
test cases, and „F‟ = { f1,f2……fx } be the set of all faults
seeded in the test program. Some or all the faults from „F‟ are
covered by each test case {t1, t2……tn} in the original test
suite. „ i‟ , is the time elapsed while ants cover new nodes in
the graph. For evaluating a complete path, the total time
constraint, TC, is taken to be MAX. The same number of
artificial ants are generated as the number of test cases. „S‟,

which consists of „m‟ test cases (m<n, S T), is a subset of the
original test suite and consists of the selected test cases for
each ant. There are „n‟ subsets for „n‟ ants. Pheromone
deposited is represented by „wi,‟ the weight of the ith edge in
the graph. The deposition rate of pheromone is +1 or 100% for
each edge crossed on the optimal path. The evaporation rate of
pheromone is taken to be 10%, which is reduced from the
weight of each edge, after iteration is complete [8]. The
proposed algorithm is shown in Fig.2, taken from [7].

B. Complexity of the Algorithms

The whole effort of building the algorithm is wasted if the
algorithm itself takes more time to run than to rerun all the test
cases in the regression test suite. To prove the efficiency of
ACO in test case selection and prioritization with respect to
execution time, we computed the complexity of the algorithm
as explained.

The algorithm, as shown in fig. 2 has a running time
bounded by the time required to generate the artificial ants a1
to an in Step 1, plus the number of iterations for the three
nested loops in Step 2. Let „T‟ be the regression test suite, i.e.
a set of test cases with │T│ number of total test cases in it.
And let „TC‟ be the time constraint input by the user.

Figure 2. ACO Algorithm for test suite selection and prioritization proposed

by Singh et al. [7]

[ISSN 2250 - 3765]

International Journal Of Computer SCiecne and its Applications

288

Generation of artificial ants in Step 1 is an O(│T│)
operation [17]. The innermost loop (Do-while) calls
select_test_cases() till all the faults are covered. This can
repeat for maximum │T│ times as there are at most │T│ test
cases in the test suite T. Thus, in the best case only 1 call to
the select_test_case() needs to be made, while in the worst
case, │T│ calls will be made to select_test_case(). The second
nested loop (for loop) clearly repeats for │T│ iterations. The
outermost Do-while loop repeats until the execution time of
selected test cases for every iteration increases beyond the user
defined constraint Tc, which is constant and independent of
the size of the test suite. Hence, the overall complexity of the
ACO algorithm is O(TC.│T│2) for worst case, which is
equivalent to O(│T│2).

Select_test_case() itself takes constant time to execute and
is independent of the size of the input test suite (T) or input
time constraint (Tc).

Thus, the Best case complexity for the ACO algorithm for
test suite selection and prioritization comes out to be

O(Tc│T│) O(│T│), as the function select_test_case() is
called only once to cover all the faults. This complexity is
acceptable as compared to the NP-complete problem of time
aware prioritization [4].

Figure 3. Directed graph for CollAdmission

Figure 4. Directed graph for Hotel_Mgmnt

C. Graph Theory

T To implement the ACO algorithm we need to represent
graphs in some mathematical form. This can be done in two
standard ways: adjacency list and adjacency matrix [18]. It is
preferred to use adjacency matrix representation for dense
graphs [18]. Initially, there is equal probability of any set of
edges being the best path, and due to the random nature of
ACO, we create a fully connected graph G[V, E]; where V is
the set of vertices representing the test suite „T‟, and E is the
set of edges, weight on which determines the amount of
pheromone on that path. Initially weight on each edge is 0 as
no pheromone is deposited. We chose adjacency matrix
representation for our implementation, as ours is a fully
connected directed graph with initial weight 0 on all the edges.
Though we are interested only in the edges which would have
their weight > 0 at the end of the algorithm, but due to the
random nature of ACO, it could be any edge(s).

In our case, adjacency matrix is of the size N x N, where N
is the number of vertices in the graph (or the number of test
cases in the original regression test suite, │T│). The final
graphs constructed for sample program CollAdmission‟s
sample run 3 and program HotelMgmnt‟s sample run 6 are
shown in fig 3 & 4 respectively. Edges with 0 weights are not
shown for the sake of simplicity; otherwise it is a fully
connected graph.

IV. EXPERIMENTAL DESIGN

A. Programs

For our analysis we used two C++ programs. Using fault
seeding technique [19, 20] five modified versions and black
box test cases for two programs were generated. First program
CollAdmission is a 281 LOC college program for admission
of courses. Second program HotelMgmnt is a 666 LOC menu
driven program where hotel database has been tried to
implement using classes. Both of the programs are live and
available at [21].

B. Variables

The independent variables manipulated by the experiment
are:

1) Subject programs with five faults each.

2) Selection and prioritization techniques (no order,

random order, reverse order, optimal, ACO)

.
For each of the programs, on each run we measured:

1) The ratio of the total execution time of the test suite to

the reduced ACO execution time.

2) Whether the optimal path has been found or not.

For each program run, random nature of ACO led to

different paths using which three dependent variables were
computed:

1) Percentage reduction in test suite size,

2) Percentage reduction in execution time, and

[ISSN 2250 - 3765]

International Journal Of Computer SCiecne and its Applications

289

3) Percentage of the number of times the best path is

found.

C. Design

To build confidence in the technique ACO, we repeated
forty runs for each of the programs with same test suites. Each
run yielded the path found whether or not optimal. The time
constraint chosen as the stopping criteria of the algorithm was
taken to be 300 for all 80 runs. Time reduction, optimality of
technique and the fault detection effectiveness using APFD
metrics were obtained from the output data.

V. DATA ANALYSIS

For our experiment, out of the complete test pool, we
randomly chose a test suite of nine and five test cases for
CollAdmission & HotelMgmnt respectively. Execution time
for each of the test cases was then calculated and used as an
input to the ACO algorithm. The algorithm was executed 40
times each for the test programs with a constant time
constraint TC=300. The results obtained are summarized in
Fig.5- Fig.10.

Fig.5 & Fig.6 represent the distribution of optimal and
other paths found for 40 test runs on both the programs. It
shows that 82% times the optimal path was found by the ACO
technique for both the programs. Also, it is depicted in the
figures that the cases for which optimal path have not been
found, 2nd, 3rd or 4th optimal path has been found. Though
18% times the optimal path was not found, the path found is
near optimal. It leads to total fault coverage and less execution
time than randomly choosing the test cases.

Fig.7 and Fig.8 depict the percentage reduction in execution
time using ACO selection and prioritization as compared to no
prioritization. The results are shown for 40 test runs on both
programs with same set of input data. The average reduction in
execution time is 82.5% and 58.17% for CollAdmission and
HotelMgmnt respectively. The difference is due to the
difference in size and type of the chosen programs. This leads
to the result that ACO might not always lead to optimal
solution. But the solution is still very fruitful as no test run
gave >10% of the best possible percentage time reduction using
ACO

 .

Figure 5. CollAdmission, TC=300

Figure 6. HotelMgmnt, TC=300

Figure 7. Execution time reduction for CollAdmission

Figure 8. Execution time reduction for HotelMgmnt

VI. COMPARISON

The test programs mentioned in above section were
compared with the following ordering: No order, Random
order, Reverse order, Optimal order and ACO order of the test
cases. The orderings with of these approaches are listed in
Table 1 & 2 for both programs respectively. Comparison has
been done by computing the Average Percentage of Faults
Detected (APFD) [22, 23, 24]. The results are depicted in fig.7
& fig.8. We can infer from here that the selection and
prioritization achieved using ACO lead to results that are near
to the optimum ordering. The ACO technique is more

[ISSN 2250 - 3765]

International Journal Of Computer SCiecne and its Applications

290

effective than other approaches in terms of the percentage of
fault coverage attained.

TABLE I. PRIORITIZED ORRDERS FOR COLLADMISSION

TABLE II. PRIORITIZED ORRDERS FOR HOTELMGMNT

Figure 9. APFD for CollAdmission

Figure 10. APFD for HotelMgmnt

VII. THREATS TO VALIDITY

Threats to construct validity are the threats related to the
whether measurements conform to accuracy or not. The
measurement metrics used in this paper is APFD which has
already been widely accepted and used [22, 23 24] as a
measure for rate of fault detection. Another threat is that the
pheromone evaporation rate is taken to be 10%. It does not
confirm to real life ants, but it has already been successfully
used by [7, 8] and hence we use the same value for the
pheromone evaporation rate.

There can be threats to internal validity. These can arise in
our system from the fact that real ants also consider the
direction in which the smell the food source to decide their
path. In this paper only the pheromone amount deposited by
other ants is considered to find the path. This approach is valid
because almost all the ACO applications [8, 10, 11, 12, 13, 14,
15, 16] have applied it and achieved correct solutions.

The threats to external validity might include the use of
seeded faults. As has already been reported, mutation faults
can be used to represent real faults in experimental evaluations
[25].

VIII. CONCLUSIONS & FUTURE SCOPE

Application of the ACO technique to the problem of test
case selection and prioritization leads to solutions which are
optimal or near optimal. The obtained complexity and results
also encourage the use of ACO in time constraint test case
selection and prioritization. The comparison of ACO with
other reference techniques using APFD suggests that ordering
obtained for ACO are nearly same as the optimal ordering. In
future we wish to apply the same for larger and complex
systems.

REFERENCES

[1] G.Rothermel, R.J.Untch, and C.Chu, “Prioritizing test cases for

regression testing”, IEEE Transaction on Software. Eng., vol. 27(10), pp.
929-948, 2001.

[2] T.L.Graves, M.Harrold, M.J.Kim, A.Porter and G.Rothermel, “An
empirical study of regression test selection techniques”, ACM
Transactions on Software Engineering and Methodology, vol. 10(2),
2001.

[3] G.Rothermel, M.Harrold, J.Ronne, C.Hong, “Empirical studies of test
suite reduction”, Software Testing, Verification and Reliability, vol.
4(2), pp. 219-249, December 2002.

[4] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, “Time
aware test suite prioritization”, Proceedings of ACM/SIGSOFT
International Symposium on Software Testing & Analysis (ISSTA),
Portland Maine, USA, pp. 1–11, 2006.

[5] X. Qu, M. Cohen, and G. Rothermel, “Configuration-Aware Regression
Testing: An Empirical Study of Sampling and
Prioritization”, Proceedings of the International Synposium on Software
Testing and Analysis, pp. 75-86, July 2008.

[6] S.Elbaum, G.Rothermel, S. Kanduri, A. G Malishevsky, “Selecting a
Cost-Effective Test Case Prioritization Technique”, Software Quality
Journal, Kluwer Academic Publishers, vol. 12(3), pp. 185-210, 2004.

[7] Y.Singh, A.Kaur, B.Suri, “Test case prioritization using ant colony
optimization”, ACM SIGSOFT Software Engineering Notes, vol. 35(4),
pp. 1-7, July 2010.

No Order
Random Reverse Optimal ACO

Order Order fault cvg

T1 T4 T9 T6 T6

T2 T6 T8 T8 T8

T3 T5 T7 T1 T4

T4 T9 T6 T2 T1

T5 T3 T5 T3 T3

T6 T8 T4 T4 T2

T7 T7 T3 T5 T5

T8 T1 T2 T7 T7

T9 T2 T1 T9 T9

No Order
Random

Order

Reverse

Order

Optimal

Fault

Coverage

ACO

 T1 T4 T5 T3 T3

T2 T3 T4 T5 T5

T3 T1 T3 T1 T1

T4 T5 T2 T2 T4

T5 T2 T1 T4 T2

[ISSN 2250 - 3765]

International Journal Of Computer SCiecne and its Applications

291

[8] M. Dorigo, K.Socha, “An Introduction to Ant Colony Optimization”,
IRIDIA Technical Report Series, TR/IRIDIA/2006-010, 2006.

[9] P.E.Merloti, San Diego, “Optimization Algorithms Inspired by
Biological Ants and Swarm Behavior”, State University, Artificial
Intelligence Technical Report – CS550, San Diego, 2004.

[10] K.Ayari, S.Bouktif, and G.Antoniol, “Automatic Mutation Test Input
Data Generation via Ant Colony”, pp. 1074, 2007.

[11] G.Caro, Di and M.Dorigo, “AntNet: Distributed stigmergetic control for
communications networks”, Journal of Artificial Intelligence Research,
vol. 9, pp. 317-365, 1998.

[12] M.Dorigo, V.Maniezzo, and A.Colorni, “Ant System: Optimization by a
colony of cooperating agents”, IEEE Trannsactions on Systems, Man
and Cybernetics, vol. B(26), pp. 29-41, 1996.

[13] H.Li, and C.Peng Lam, “Software Test Data Generation Using Ant
Colony Optimization”, pp. 1, 2005.

[14] L.Li, S.Ju, and Y.Zhang, “Improved Ant Colony Optimization for the
Travelling Salesman Problem”, International Conference on Intelligent
Computation Technology and Automation, pp. 76, 2008.

[15] R.S.Parpinelli, H.S.Lopes, and A.A.Freitas, “Data mining with an ant
colony optimization algorithm”, IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 321–332, 2002.

[16] P.Zhao, P.Zhao, and X.Zhang, “New Ant Colony Optimization for the
Knapsack Problem”, 2006.

[17] T.H.Cormen, C.E.Leiserson, R.L.Rivest and C.Stein, “Introduction to
Algorithms”, PHI Publications, 2009 edition.

[18] V.Adamchick, “Graph Theory”, book, a chapter in Concepts of
Mathematics, pp. 21-127, 2005,.

[19] T. A. Budd, “Mutation Analysis of Program Test Data”, PhD thesis,
Yale University, New Haven, CT, May 1980.

[20] R.A.DeMillo and A.P.Mathur, “On the use of software artifacts to
evaluate the effectiveness of mutation analysis for detecting errors in
production software”, in Thirteenth Minnowbrook Workshop on
Software Engineering, July 1990.

[21] www.sourceforge.com .

[22] B. Pfahring, “Multi-agent search for open scheduling: adapting the Ant-
Q formalism,” Technical report TR-96-09, 1996.

[23] C. Gagné, W. L. Price and M. Gravel, “Comparing an ACO algorithm
with other heuristics for the single machine scheduling problem with
sequence-dependent setup times,” Journal of the Operational Research
Society, vol. 53, pp. 895-906, 2002.

[24] P. Toth and D. Vigo, “Models, relaxations and exact approaches for the
capacitated vehicle routing problem,” Discrete Applied Mathematics,
vol. 123, pp. 487-512, 2002.

[25] J.H.Andrews, L.C. Briand and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?”, In International Conference of Software
Engineering, pp. 402-411, May 2005.

[ISSN 2250 - 3765]

http://www.sourceforge.com/

