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Abstract — Regression testing is a crucial and often 

costly software maintenance activity. In order to regain 

confidence in correctness of the system whenever 

modifications are made, we retest the software using 

existing test suite. But regression test suites are often too 

large to re-execute in the given time and cost constraints 

and thus we use test case selection and prioritization 

techniques. Ant Colony Optimization is a meta-heuristic 

approach that has been applied for time-constraint test 

case selection and prioritization. We performed an 

experiment to evaluate the effectiveness of the proposed 

algorithm and compared it with other techniques using 

APFD metrics. Our results highlight close proximity to 

optimal solution and show the time reduction achieved by 

this technique.  
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I.  INTRODUCTION  

To cope up with the ever changing and demanding IT 
environment, we need to modify our software in its 
maintenance phase. After modifications are made, we need to 
retest the software using existing test suite so that we regain the 
confidence in correctness of our system. This is called 
Regression testing. Regression test suites being too large to re-
execute in the given time and cost constraints are reduced or re-
ordered. This can be achieved by using one or more of the three 
techniques, Test case selection, minimization or prioritization. 
Test Case Prioritization is the reordering of the test suite 
according to an appropriate criterion like code, branch, 
condition and fault coverage etc. [1]. We can also select a 
subset of the original test suite on the basis of some criteria, 
often called as Regression Test Selection [2]. Or using Test 
case minimization we can identify and remove the redundant 
test cases [3]. Considering the cost of executing a test case, 
many cost-aware prioritization techniques have been proposed 
[4, 5, 6]. Taking time as cost, Time-Aware test suite 
prioritization was proposed by Walcott [4]. It uses execution 
time of the test cases as a parameter for test case prioritization 
in addition to Fault Executing Potential (FEP) criteria. 
Execution time acts as the cost of executing the test case. 
Prioritization of test cases is then done according to maximum 

FEP and minimum cost of execution. Time constrained test 
case prioritization problem has been reduced to zero/one 
knapsack problem which is NP-complete [4]. Thus, techniques 
that solve combinatorial optimization problems can be applied 
to time constrained prioritization of test cases. 

Many techniques have been used for selecting and 
prioritization according to one or more of the chosen criteria(s). 
Ant Colony Optimization (ACO) is a technique that was used 
by Singh et al. [7] for solving Time-Constrained Test Case 
Selection and Prioritization problem using Fault Exposing 
Potential (FEP) criteria. ACO is a nature inspired technique 
proposed by Dorigo et al [8] for solving combinatorial 
optimization problems. Recently many nature inspired 
algorithms are being applied to solve optimization problems. 
ACO is an approach based on the real life of ants, precisely on 
their food source searching process as described in later 
sections of the paper. 

In this paper, time and space complexity of the proposed 
algorithm [7] has been computed which provided further 
motivation to implement the technique. The work of 
implementation of the proposed algorithm and its analysis for 
forty runs of the tool on two sample programs has been shown. 
The analysis demonstrates the usefulness and effectiveness of 
using ACO technique for test suite selection and prioritization. 
Analysis of the technique highlights assurance of 100% fault 
coverage whether ordering is optimal or not. A comparison has 
also be done against the no order, random order, reverse order 
and optimal order prioritization shown using APFD metric. 
This also proves the closeness of selection and prioritization 
using ACO with the optimal ordering.. 

II. ANT COLONY OPTIMIZATION 

It is an astonishing discovery of entomologists that the real 
power of ants resides in their colony brain [9]. Ants are blind 
and they communicate within the colony by the use of a 
chemical substance called pheromone. As ants move from 
their nest to food source and vice-versa, they deposit the 
pheromone trail on that path. This pheromone trail is then 
smelled by other ants which tend to follow the path with 
maximum pheromone trail. Point of our interest is that, an ant 
reaches the food source and comes back to its nest. Thus, the 
ant on the shortest path is also the earliest to return, depositing 
more amount of  
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Figure 1.   ACO Example. Above the path shown are the ants that follow the 

path and their pheromone trail is shown below the path 

pheromone on that path (while going and returning to the 
nest). This increases the probability of other ants following 
this path [8]. The ants following this path will again lay more 
pheromone on the path. Thus even more ants tend to follow 
this path and continuing the process, ultimately all ants 
converge to the shortest or the best path. 

This process of ants converging to the shortest path is 
illustrated in the example shown in fig. 1. There are three 
possible paths (P1, P2, P3) from ant nest to the food source. 
Initially an ant can choose any of the three paths. After 
collecting the food from source ants also come back to their 
nests. Thus the ant on the shortest path is also the first one to 
return to the nest, which implies that more amount of 
pheromone is deposited on this path. New ants starting from 
the nest would tend to follow this path and deposit more 
pheromone. Finally, it is observed that all the ants converge to 
the best path (P2 in the fig. 1) and this path has the maximum 
pheromone trail deposited. This phenomenon of finding the 
best shortest path by a colony of ants is known as Ant Colony 
Optimization. 

Derived from this real behavior of ants, Dorigo proposed 
Ant Colony Optimization (ACO) in the year 2006[8]. This 
technique has already been used in solving various 
combinatorial optimization problems such as knapsack 
problem, travelling salesman problem, distributed networks, 
data mining, telecommunication networks, vehicle routing, 
test data generation [8, 10, 11, 12, 13, 14, 15, 16] etc. As 
proposed by Singh et al [7], ACO can be applied to time 
constraint test suite selection and prioritization.   

III. TEST SUITE SELECTION & PRIORITIZATION USING ACO 

A. Description of the Technique 

Suppose „T‟ = {t1, t2……tn} is the set of all „n‟ number of 
test cases, and „F‟ = { f1,f2……fx } be the set of all faults 
seeded in the test program. Some or all the faults from „F‟ are 
covered by each test case {t1, t2……tn} in the original test 
suite. „ i‟ , is the time elapsed while ants cover new nodes in 
the graph. For evaluating a complete path, the total time 
constraint, TC, is taken to be MAX. The same number of 
artificial ants are generated as the number of test cases. „S‟, 

which consists of „m‟ test cases (m<n, S T), is a subset of the 
original test suite and consists of the selected test cases for 
each ant. There are „n‟ subsets for „n‟ ants. Pheromone 
deposited is represented by „wi,‟ the weight of the ith edge in 
the graph. The deposition rate of pheromone is +1 or 100% for 
each edge crossed on the optimal path. The evaporation rate of 
pheromone is taken to be 10%, which is reduced from the 
weight of each edge, after iteration is complete [8]. The 
proposed algorithm is shown in Fig.2, taken from [7]. 

B. Complexity of the Algorithms 

The whole effort of building the algorithm is wasted if the 
algorithm itself takes more time to run than to rerun all the test 
cases in the regression test suite. To prove the efficiency of 
ACO in test case selection and prioritization with respect to 
execution time, we computed the complexity of the algorithm 
as explained. 

The algorithm, as shown in fig. 2 has a running time 
bounded by the time required to generate the artificial ants a1 
to an in Step 1, plus the number of iterations for the three 
nested loops in Step 2. Let „T‟ be the regression test suite, i.e. 
a set of test cases with │T│ number of total test cases in it. 
And let „TC‟ be the time constraint input by the user. 

Figure 2.  ACO Algorithm for test suite selection and prioritization proposed 

by Singh et al. [7] 
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Generation of artificial ants in Step 1 is an O(│T│) 
operation [17]. The innermost loop (Do-while) calls 
select_test_cases() till all the faults are covered. This can 
repeat for maximum │T│ times as there are at most │T│ test 
cases in the test suite T. Thus, in the best case only 1 call to 
the select_test_case() needs to be made, while in the worst 
case, │T│ calls will be made to select_test_case(). The second 
nested loop (for loop) clearly repeats for │T│ iterations. The 
outermost Do-while loop repeats until the execution time of 
selected test cases for every iteration increases beyond the user 
defined constraint Tc, which is constant and independent of 
the size of the test suite. Hence, the overall complexity of the 
ACO algorithm is O(TC.│T│2) for worst case, which is 
equivalent to O(│T│2).  

Select_test_case() itself takes constant time to execute and 
is independent of the size of the input test suite (T) or input 
time constraint (Tc).  

Thus, the Best case complexity for the ACO algorithm for 
test suite selection and prioritization comes out to be 

O(Tc│T│)  O(│T│), as the function select_test_case() is 
called only once to cover all the faults. This complexity is 
acceptable as compared to the NP-complete problem of time 
aware prioritization [4]. 

 

 

Figure 3.  Directed graph for CollAdmission 

 

 

 

 

 

 

 

 

 

Figure 4.  Directed graph for Hotel_Mgmnt 

C. Graph Theory 

T To implement the ACO algorithm we need to represent 
graphs in some mathematical form. This can be done in two 
standard ways: adjacency list and adjacency matrix [18]. It is 
preferred to use adjacency matrix representation for dense 
graphs [18]. Initially, there is equal probability of any set of 
edges being the best path, and due to the random nature of 
ACO, we create a fully connected graph G[V, E]; where V is 
the set of vertices representing the test suite „T‟, and E is the 
set of edges, weight on which determines the amount of 
pheromone on that path. Initially weight on each edge is 0 as 
no pheromone is deposited. We chose adjacency matrix 
representation for our implementation, as ours is a fully 
connected directed graph with initial weight 0 on all the edges. 
Though we are interested only in the edges which would have 
their weight > 0 at the end of the algorithm, but due to the 
random nature of ACO, it could be any edge(s). 

In our case, adjacency matrix is of the size N x N, where N 
is the number of vertices in the graph (or the number of test 
cases in the original regression test suite, │T│). The final 
graphs constructed for sample program CollAdmission‟s 
sample run 3 and program HotelMgmnt‟s sample run 6 are 
shown in fig 3 & 4 respectively. Edges with 0 weights are not 
shown for the sake of simplicity; otherwise it is a fully 
connected graph. 

IV. EXPERIMENTAL DESIGN 

A. Programs 

For our analysis we used two C++ programs. Using fault 
seeding technique [19, 20] five modified versions and black 
box test cases for two programs were generated. First program 
CollAdmission is a 281 LOC college program for admission 
of courses. Second program HotelMgmnt is a 666 LOC menu 
driven program where hotel database has been tried to 
implement using classes. Both of the programs are live and 
available at [21].  

B. Variables 

The independent variables manipulated by the experiment 
are: 

1) Subject programs with five faults each. 

2) Selection and prioritization techniques (no order, 

random order, reverse order, optimal, ACO) 

. 
For each of the programs, on each run we measured: 

1) The ratio of the total execution time of the test suite to 

the reduced ACO execution time. 

2) Whether the optimal path has been found or not. 

 
For each program run, random nature of ACO led to 

different paths using which three dependent variables were 
computed:  

1) Percentage reduction in test suite size, 

2) Percentage reduction in execution time, and 
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3) Percentage of the number of times the best path is 

found. 

C. Design 

To build confidence in the technique ACO, we repeated 
forty runs for each of the programs with same test suites. Each 
run yielded the path found whether or not optimal. The time 
constraint chosen as the stopping criteria of the algorithm was 
taken to be 300 for all 80 runs. Time reduction, optimality of 
technique and the fault detection effectiveness using APFD 
metrics were obtained from the output data. 

V. DATA ANALYSIS 

For our experiment, out of the complete test pool, we 
randomly chose a test suite of nine and five test cases for 
CollAdmission & HotelMgmnt respectively. Execution time 
for each of the test cases was then calculated and used as an 
input to the ACO algorithm. The algorithm was executed 40 
times each for the test programs with a constant time 
constraint TC=300. The results obtained are summarized in 
Fig.5- Fig.10. 

Fig.5 & Fig.6 represent the distribution of optimal and 
other paths found for 40 test runs on both the programs. It 
shows that 82% times the optimal path was found by the ACO 
technique for both the programs. Also, it is depicted in the 
figures that the cases for which optimal path have not been 
found, 2nd, 3rd or 4th optimal path has been found. Though 
18% times the optimal path was not found, the path found is 
near optimal. It leads to total fault coverage and less execution 
time than randomly choosing the test cases. 

Fig.7 and Fig.8 depict the percentage reduction in execution 
time using ACO selection and prioritization as compared to no 
prioritization. The results are shown for 40 test runs on both 
programs with same set of input data. The average reduction in 
execution time is 82.5% and 58.17% for CollAdmission and 
HotelMgmnt respectively. The difference is due to the 
difference in size and type of the chosen programs. This leads 
to the result that ACO might not always lead to optimal 
solution. But the solution is still very fruitful as no test run 
gave >10% of the best possible percentage time reduction using 
ACO       

    . 

Figure 5.  CollAdmission, TC=300 

 

Figure 6.  HotelMgmnt, TC=300 

 

Figure 7.  Execution time reduction for CollAdmission 

 

Figure 8.  Execution time reduction for HotelMgmnt 

VI. COMPARISON 

The test programs mentioned in above section were 
compared with the following ordering: No order, Random 
order, Reverse order, Optimal order and ACO order of the test 
cases. The orderings with of these approaches are listed in 
Table 1 & 2 for both programs respectively. Comparison has 
been done by computing the Average Percentage of Faults 
Detected (APFD) [22, 23, 24]. The results are depicted in fig.7 
& fig.8. We can infer from here that the selection and 
prioritization achieved using ACO lead to results that are near 
to the optimum ordering. The ACO technique is more 
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effective than other approaches in terms of the percentage of 
fault coverage attained.  

TABLE I.  PRIORITIZED ORRDERS FOR COLLADMISSION 

TABLE II.  PRIORITIZED ORRDERS FOR HOTELMGMNT 

 

 
Figure 9.  APFD for CollAdmission 

 

Figure 10.  APFD for HotelMgmnt 

VII. THREATS TO VALIDITY 

Threats to construct validity are the threats related to the 
whether measurements conform to accuracy or not. The 
measurement metrics used in this paper is APFD which has 
already been widely accepted and used [22, 23 24] as a 
measure for rate of fault detection. Another threat is that the 
pheromone evaporation rate is taken to be 10%. It does not 
confirm to real life ants, but it has already been successfully 
used by [7, 8] and hence we use the same value for the 
pheromone evaporation rate. 

There can be threats to internal validity. These can arise in 
our system from the fact that real ants also consider the 
direction in which the smell the food source to decide their 
path. In this paper only the pheromone amount deposited by 
other ants is considered to find the path. This approach is valid 
because almost all the ACO applications [8, 10, 11, 12, 13, 14, 
15, 16] have applied it and achieved correct solutions. 

The threats to external validity might include the use of 
seeded faults. As has already been reported, mutation faults 
can be used to represent real faults in experimental evaluations 
[25]. 

VIII. CONCLUSIONS & FUTURE SCOPE 

Application of the ACO technique to the problem of test 
case selection and prioritization leads to solutions which are 
optimal or near optimal. The obtained complexity and results 
also encourage the use of ACO in time constraint test case 
selection and prioritization. The comparison of ACO with 
other reference techniques using APFD suggests that ordering 
obtained for ACO are nearly same as the optimal ordering. In 
future we wish to apply the same for larger and complex 
systems. 
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