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Abstract  

This paper addresses design, hardware 

implementation and performance testing of 

AES algorithm. An optimized code for the 

Rijndael algorithm with 128-bit keys has been 

developed. The area and throughput are 

carefully trading off to make it suitable for 

wireless military communication and mobile 

telephony where emphasis is on the speed as 

well as on area of implementation.  
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1. Introduction 

Several techniques, such as cryptography, 

steganography, watermarking, and scrambling, 

have been developed to keep data secure, private, 

and copyright protected. However, the need for 

secure transactions in ecommerce, private 

networks, and secure messaging has moved 

encryption into the commercial realm. Advanced 

encryption standard (AES) was issued as Federal 

Information Processing Standards (FIPS) by 

National Institute of Standards and Technology 

(NIST) as a successor to data encryption standard 

(DES) algorithms. The hardwarebased 

implementation of AES Rijndael Algorithm [1] is 

required because it is secure and consumes much 

less power than a software implementation. In 

recent literature, a number of architectures for the 

VLSI  implementation of AES Rijndael algorithm 

are reported [2] [3] [4] [5] [6]. Some of these are of 

low performance and low throughput architectures. 

Further, many of the architectures are not area 

efficient and can result in higher cost when 

implemented in silicon. Su et al. [15] presented an 

implementation with reduced hardware overhead. 

Satoh et. al. [6] presented a low performance 

implementation with less hardware resources. 

Verbauwhede et al. [2] presented an ASIC 

implementation having a throughput of 2.29 Gb/s. 

In 2001, Elbirt et al. [10] compared five algorithms 

for AES block cipher FPGA implementations and 

the throughputs of Rijndael algorithm were found 

in the range of 188 Mb/s to 1.94Gb/s. McLoone 

and McCanny [4] utilized look-up tables to 
implement the entire Rijndael round function in 
FPGAs and demonstrated a throughput of 12 
Gb/s.A high throughput implementation is 
required to support security for current and 
future high bandwidth applications. A low 
silicon area  implementation is also, desirable 
to make it embeddable not only in high-end 
servers but also in low-end consumer 
products such as mobile terminals. This paper 
addresses design,hardware implementation 
and performance testing of AES algorithm. An 
optimized code for the Rijndael algorithm with 
128-bit keys has been developed. The area 
and throughput are carefully trading off to 
make it suitable for wireless military 
communication and mobile telephony where 
emphasis is on the speed as well as on area 
of implementation. The proposed architecture 
is optimized for high throughput in terms of the 
encryption and decryption data rates by 
keeping the combinational paths balanced so 
that every clock cycle is fully utilized. The 
paper is organized as follows. In section 2, a 
brief overview of the AES Algorithm is 
provided. Section 3, focuses hardware 
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architecture of the proposed design. 
Performance analysis and measurement 
results are reported in section 4. Finally, 
conclusions are made in section 5.  
 
 

 

2. RIJNDAEL Algorithm: A Brief Overview 

The AES is a round based symmetric block 
cipher. It takes a 128 bit data block as input 
and performs several transformations on this 
block [4][6][12]. The AES-Rijndael algorithms 
operations are performed in the state. 

The State is a two-dimensional array of bytes, 
consisting of four rows and Nb columns, 
where Nb is the block length divided by 32. In 
AES Algorithm, all bytes are represented as 
elements of the finite field GF(28) Using the 
polynomial representation, the 
byte{01100011} is represented as x6+x5+x+1 
or {63} in hexadecimal notation. Mathematical 
operations with finite field elements are 
different from those used for numbers. The 
addition is achieved by adding the  
corresponding powers of the two polynomials. 
This operation is a modulo 2, i.e. it is an XOR 
operation. Consequently, subtraction of finite 
field elements isidentical to addition.  
ultiplication in GF is a polynomial multiplication 
of degree 8. AES algorithm specifies an 
irreducible  polynomial as: m(x) = 
x8+x4+x3+x+1 or {01}{0b}. There is no simple 
operation available at byte level that  
mplements this multiplication. The number of 
rounds depends on the key size and blocks 
size and is summarized in Table 1. The 
number of rounds (Nr) is generated by the 
formula: Nr = (Key Length (in bits))/32 + 6. In 
the proposed design, we have used 128-bit 
key and cipher size and therefore 10 rounds 
are needed. 
 
 
3. Design and Implementation 

The Encryption and Decryption flow of the 
AES algorithm implemented is represented in 

Fig. 1  The decryption structure has exactly 
the same sequence of transformation as that 
in the encryption structure. This feature 
enables more efficient implementation of joint 
Encryptor/ Decryptor. In a standard AES 
algorithm, there are four steps i.e. SubByte, 
ShiftRows, MixColumns and AddRoundKey in 
normal rounds for both the Cipher and its 
Inverse  (a) SubBytes - The bytes substitution 
transformation is  a non-linear substitution of 
bytes that operates independently on each 
byte of the State using a substitution table 
(Sbox). This S-box is also invertible. (b) 
ShiftRows – In the Shift Rows transformation 
ShiftRows, the bytes in the last three rows of 
the State are cyclically shifted over different 
numbers of bytes (offsets). The first row is not 
shifted. (c) MixColumns - a mixing operation 
which operates on the columns of the state, 
combining the four bytes in each column using 
a linear transformation. (d) AddRoundKey - 
each byte of the state is combined with the 
round key; each round key is derived from the 
cipher key using a key schedule.The largest 
component is Key Schedule. A wide variety of 
architectures could be used to implement a 
given algorithm [2,3]. In the proposed design, 
an  iterative architecture is chosen to suit 
entire deign in the available single chip FPGA.  
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Fig. 1 (a) AES algorithm for Encryption 

 

There are several variations on these 
approaches, including multiple copies of an 
iterative implementation for parallel 
processing, a partially pipelined 
implementation, or a combination of these 
hybrids (multiple copies of a partially pipelined 
implementation). We have followed an 
iterative approach followed by efficient 
utilization of a number of operations in each 
clock cycles. Despite the large amount of 
symmetry in encryption and decryption, care 
has been taken to eliminate symmetry in the 
behavior of the cipher. This is achieved by the 
round constants that are different for each 
round. In order to protect against chosen 
plaintext and chosen cipher text attacks, 
before the first round itself, a key addition 
layer is applied. The motivation for this initial 
key addition is the following. Any layer after 
the last key addition in the cipher (or before 
the first in the context of known-plaintext 
attacks) can be simply peeled off without 
knowledge of the key and therefore does not 
contribute to the security of the cipher. 
The Linear mixing of layer by shifting rows and 
mixing columns guarantee high diffusion as 

the transformations take place over multiple 
rounds. The non-linear S boxes help to protect 
against linear and differential cryptanalysis 
The Rijndael block executes either encrypt or 
decrypt algorithm, according to the case. As 
seen in Fig. 2, the other processes only 
provide support to read and write bus 
operation and to round keys generation. The 
Data In process gives support to Rijndael. It is 
used to take the data from the bus. It is 
controlled by the WrD and Clk signals. When 
the bus puts a data to be read, this signal is 
selected and the data is taken. Mainly three 
modifications are proposed in our design 
keeping in mind the tradeoff between silicon 
area and throughput. They are, (i) Merger of 
Sub Bytes and Shift Rows (ii) Generating the 
Sub Bytes for Encryption and using Look up 
table for Decryption (iii) Each clock cycle is 
efficiently assigned to complete a set of 
operations. 

 
Fig.1(b) AES algorithm for Decryption Flow 

 
3.1 Merger of Sub Bytes and Shift Rows 

This merging is performed by calling required 
shifted element from the data matrix, instead 
of calling element one by one sequentially 
from the data matrix. Thereby SUB-BYTE and 
SHIFT ROW operations are carried out in one-
step instead of two. Fig. 3 shows  how the 
merger is performed. The 16 elements are 
stored sequentially after each round in a 
register file. Using Mux selection, required 
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shifted data elements are called (instead of 
calling sequentially) from the register file and 
put into the State. This merging process would 
increase throughput since elements are not 
called sequentially and a balance between 
throughput and area is maintained. 
 

 
 

 
Fig. 3. Merging of Sub Bytes and Shift Rows 

 

3.2 Generating the Sub Key for Encryption and 

using Look up table for Decryption 

The SubBytes(S-box) transformation, which 

consists of a multiplicative inversion over GF (28) 

and an affine 

transform is the most critical part in the AES 

Algorithm, as far as computational complexity is 

concerned. The S-box operation is required both 

for encryption and for key expansion. The S-box 

dominates the hardware complexity of the AES 

circuit.  Conventionally the coefficients of the S-

Box and inverse S-box are stored in LUT’s, or a 

hard-wired multiplicative inverter over GF (28) 

can be used together with the affine 

transformation. We propose a multiplicative 

inverter together with the affine transformation be 

applied to the encryption unit. The LUT’s be used 

for storing the coefficients of the inverse S-Box for 

the Decryption Unit is shown in Fig.4. (a) (b) Most 

approaches use a ROM/RAM-based lookup table 

(LUT) to implement the most critical 

transformation step in the AES algorithm, the 

SubBytes transformation as described in Fig. 2(a). 

This approach is cost effective for SRAM-based 

FPGAs, The image cannot be displayed. Your 

computer may not have enough memory to open 

the image, or the image may have been corrupted. 

Restart your computer, and then open the file 

again. If the red x still appears, you may have to 

delete the image and then insert it again. 

integrated circuit (ASIC) implementation. Results 

from several other projects indicates that the 

implementation of an arithmetic circuit in a 

composite  field to compute the multiplicative 

inverse and affine transformation of the S-Box 

provides an excellent trade-off between silicon 

area and performance. The composite field 

implementation was first recommended by the 

inventor of Rijndael [9]. Other implementations 

based on this idea can be found in [5-8]. However, 

no approach has been made so far on using both 

the LUT-based approach as well the composite 

field implementation. Since the Encryption Unit 

and the Key Scheduling Component require the S-

box, we propose that the S-box be generated using 

composite field implementation in this case and 

that LUT’s be used for storing the coefficients of 

the inverse S-box for the Decryption Unit. This 

would ensure high throughput as well as less area 

resources.The Key Scheduling Component 

performs Round Key generation. This round key 

could be generated dynamically each round based 

on the previous rounds key or they can be 

generated at the start and stored in the RAM. The 

former case however, would offer much less 

buffering. 

 

3.3 Optimization of each clock cycle to 

incorporate maximum number of operations 
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Various types of hardware architectures for AES 

Algorithm are possible. As mentioned earlier, 

architecture that offers the best tradeoff between 

data throughput and silicon area is targeted in this 

work.Each clock cycle is efficiently assigned to 

complete a set of operations and the entire 

Encryption/decryption round can be completed 

with less clock cycles. 

 

4. Performance Analysis 

The proposed architecture was implemented using 

VHDL and implemented on Xilinx’s Web pack 

version 8.2i. The implementations were simulated 

for the correct encryption and decryption operation 

using the test vectors provided by the AES 

submission package [4][11]. The VHDL code of 

the design is synthesized, placed and routed using 

target device of Xilinx (Virtex2Pro). The 

architecture was simulated for verification of the 

correct functionality. It is important to determine 

the amount of data that the channel can use with 

cryptography. The throughput is calculated with 

the following formula: Throughput =block size * 

frequency / total clock cycles. The Post Route 

Simulation analysis is performed. The input and 

the cipher key are given to the device and the 
output is displayed at the 27th clock cycle 
(after 26 cycles),there by achieving a sufficient 
throughput rate with a significant compromise 
on area. The standard used is 128-bit key and 
128-bit data block size, therefore, the Control 
Component allows for only 10 rounds of AES 
encryption. The number of cycles per 
encryption block is 13. The maximum clock 
frequency is 142 MHz. The encryption and 
decryption throughput is given by 1.4Gbps. 
The parameters used to evaluate the quality of 
device are summarized in Table II. Two 
designs are compared. The original design 
based on simple iterative architecture cost 
large amount of area with a low throughput. 
The proposed design with the three 
modifications discussed in section 3 resulted 
in a much compact implementation with high 
throughput. Besides, it gave optimum usage of 
silicon area as only 50% of the resources are 

used (XC2VP30ff896). In addition, the speed 
is also improved four times.A comparison of 
various AES Designs is given in Table III. Only 
[14] has used computational arithmetic 
(multiplication and affine transform) over GF 
(28) to generate the S-box required. All the 
other architectures in Table III have made use 
of a ROM/RAM based Look up Table (LUT) to 
implement this transformation. Jarvinen et al. 
and [4] have used much lesser slices than our 
work but they have compensated 
it by utilizing more BRAM’s. Most designs 
have followed a pipeline architecture that has 
led to their increased throughput values. 
Recently, Hodjat and Ingrid [16]'s FPGA 
implementation showed a high throughput of 
21.54 Gb/s using a fully pipelined approach 
with inner-round pipelining and outer-round 
pipelining. In our approach, we have worked 
with an iterative structure and with fully 
pipelined and resource-sharing methods; we 
hope to achieve better throughputs in future. 
Though proposed design does not offer a very 
high throughput and throughput/slice value 
due to lack of pipelining, it offers a significant 
decrease in the number of slices required. The 
motivation behind this work was to achieve a 
tradeoff between throughput with area and 
results are satisfactory. 
 
5. Conclusions 

The objective of this paper was to present the 
hardware implementation of Advanced 
Encryption Standard (AES) algorithm. The 
importance of the Advanced Encryption 
Standard and the significance of area-
throughput balanced implementations of the 
Rijindael have examined. We have worked 
with an iterative structure and modifications 
such as merging of Subbytes and ShiftRows, 
Look Up tables for decryption, and 
optimization of each clock cycle to incorporate 
maximum number of operations etc. have 
been successfully implemented. The 
encryption and decryption process of Rijndael 
algorithm was captured in VHDL language 
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and corresponding FPGA implementation 
resulted in reduced number of slices and 
achieved a data throughput of 1.4 Gbit/sec. 
The combination of security, and high-speed 
implementation and marginal silicon area 
makes it a very good choice for wireless 
systems. 
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