
International journal of Computer Science and its Applications

210

HIGH THROUGHPUT-LESS AREA EFFICIENT FPGA IMPLEMENTATION OF

BLOCK CIPHER AES ALGORITHM

 M.SIRIN KUMARI D.MAHESH KUMAR Y.RAMA DEVI

 (M.TECH) IIYEAR ASSOC.PROF M.TECH(DC).

 JITS-KNR JITS-KNR JBIT,HYD

 sirin.kumari@gmail.com rama_404@rediffmail.com

Abstract

This paper addresses design, hardware

implementation and performance testing of

AES algorithm. An optimized code for the

Rijndael algorithm with 128-bit keys has been

developed. The area and throughput are

carefully trading off to make it suitable for

wireless military communication and mobile

telephony where emphasis is on the speed as

well as on area of implementation.

Keywords: Cryptography, Rijndael,

Encryption,Advanced Encryption Standard

(AES), pipelining,security, very-large-scale

integration (VLSI), VHDL.

1. Introduction

Several techniques, such as cryptography,

steganography, watermarking, and scrambling,

have been developed to keep data secure, private,

and copyright protected. However, the need for

secure transactions in ecommerce, private

networks, and secure messaging has moved

encryption into the commercial realm. Advanced

encryption standard (AES) was issued as Federal

Information Processing Standards (FIPS) by

National Institute of Standards and Technology

(NIST) as a successor to data encryption standard

(DES) algorithms. The hardwarebased

implementation of AES Rijndael Algorithm [1] is

required because it is secure and consumes much

less power than a software implementation. In

recent literature, a number of architectures for the

VLSI implementation of AES Rijndael algorithm

are reported [2] [3] [4] [5] [6]. Some of these are of

low performance and low throughput architectures.

Further, many of the architectures are not area

efficient and can result in higher cost when

implemented in silicon. Su et al. [15] presented an

implementation with reduced hardware overhead.

Satoh et. al. [6] presented a low performance

implementation with less hardware resources.

Verbauwhede et al. [2] presented an ASIC

implementation having a throughput of 2.29 Gb/s.

In 2001, Elbirt et al. [10] compared five algorithms

for AES block cipher FPGA implementations and

the throughputs of Rijndael algorithm were found

in the range of 188 Mb/s to 1.94Gb/s. McLoone

and McCanny [4] utilized look-up tables to
implement the entire Rijndael round function in
FPGAs and demonstrated a throughput of 12
Gb/s.A high throughput implementation is
required to support security for current and
future high bandwidth applications. A low
silicon area implementation is also, desirable
to make it embeddable not only in high-end
servers but also in low-end consumer
products such as mobile terminals. This paper
addresses design,hardware implementation
and performance testing of AES algorithm. An
optimized code for the Rijndael algorithm with
128-bit keys has been developed. The area
and throughput are carefully trading off to
make it suitable for wireless military
communication and mobile telephony where
emphasis is on the speed as well as on area
of implementation. The proposed architecture
is optimized for high throughput in terms of the
encryption and decryption data rates by
keeping the combinational paths balanced so
that every clock cycle is fully utilized. The
paper is organized as follows. In section 2, a
brief overview of the AES Algorithm is
provided. Section 3, focuses hardware

[ISSN 2250 - 3765]

mailto:sirin.kumari@gmail.com

International journal of Computer Science and its Applications

211

architecture of the proposed design.
Performance analysis and measurement
results are reported in section 4. Finally,
conclusions are made in section 5.

2. RIJNDAEL Algorithm: A Brief Overview

The AES is a round based symmetric block
cipher. It takes a 128 bit data block as input
and performs several transformations on this
block [4][6][12]. The AES-Rijndael algorithms
operations are performed in the state.

The State is a two-dimensional array of bytes,
consisting of four rows and Nb columns,
where Nb is the block length divided by 32. In
AES Algorithm, all bytes are represented as
elements of the finite field GF(28) Using the
polynomial representation, the
byte{01100011} is represented as x6+x5+x+1
or {63} in hexadecimal notation. Mathematical
operations with finite field elements are
different from those used for numbers. The
addition is achieved by adding the
corresponding powers of the two polynomials.
This operation is a modulo 2, i.e. it is an XOR
operation. Consequently, subtraction of finite
field elements isidentical to addition.
ultiplication in GF is a polynomial multiplication
of degree 8. AES algorithm specifies an
irreducible polynomial as: m(x) =
x8+x4+x3+x+1 or {01}{0b}. There is no simple
operation available at byte level that
mplements this multiplication. The number of
rounds depends on the key size and blocks
size and is summarized in Table 1. The
number of rounds (Nr) is generated by the
formula: Nr = (Key Length (in bits))/32 + 6. In
the proposed design, we have used 128-bit
key and cipher size and therefore 10 rounds
are needed.

3. Design and Implementation

The Encryption and Decryption flow of the
AES algorithm implemented is represented in

Fig. 1 The decryption structure has exactly
the same sequence of transformation as that
in the encryption structure. This feature
enables more efficient implementation of joint
Encryptor/ Decryptor. In a standard AES
algorithm, there are four steps i.e. SubByte,
ShiftRows, MixColumns and AddRoundKey in
normal rounds for both the Cipher and its
Inverse (a) SubBytes - The bytes substitution
transformation is a non-linear substitution of
bytes that operates independently on each
byte of the State using a substitution table
(Sbox). This S-box is also invertible. (b)
ShiftRows – In the Shift Rows transformation
ShiftRows, the bytes in the last three rows of
the State are cyclically shifted over different
numbers of bytes (offsets). The first row is not
shifted. (c) MixColumns - a mixing operation
which operates on the columns of the state,
combining the four bytes in each column using
a linear transformation. (d) AddRoundKey -
each byte of the state is combined with the
round key; each round key is derived from the
cipher key using a key schedule.The largest
component is Key Schedule. A wide variety of
architectures could be used to implement a
given algorithm [2,3]. In the proposed design,
an iterative architecture is chosen to suit
entire deign in the available single chip FPGA.

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

212

Fig. 1 (a) AES algorithm for Encryption

There are several variations on these
approaches, including multiple copies of an
iterative implementation for parallel
processing, a partially pipelined
implementation, or a combination of these
hybrids (multiple copies of a partially pipelined
implementation). We have followed an
iterative approach followed by efficient
utilization of a number of operations in each
clock cycles. Despite the large amount of
symmetry in encryption and decryption, care
has been taken to eliminate symmetry in the
behavior of the cipher. This is achieved by the
round constants that are different for each
round. In order to protect against chosen
plaintext and chosen cipher text attacks,
before the first round itself, a key addition
layer is applied. The motivation for this initial
key addition is the following. Any layer after
the last key addition in the cipher (or before
the first in the context of known-plaintext
attacks) can be simply peeled off without
knowledge of the key and therefore does not
contribute to the security of the cipher.
The Linear mixing of layer by shifting rows and
mixing columns guarantee high diffusion as

the transformations take place over multiple
rounds. The non-linear S boxes help to protect
against linear and differential cryptanalysis
The Rijndael block executes either encrypt or
decrypt algorithm, according to the case. As
seen in Fig. 2, the other processes only
provide support to read and write bus
operation and to round keys generation. The
Data In process gives support to Rijndael. It is
used to take the data from the bus. It is
controlled by the WrD and Clk signals. When
the bus puts a data to be read, this signal is
selected and the data is taken. Mainly three
modifications are proposed in our design
keeping in mind the tradeoff between silicon
area and throughput. They are, (i) Merger of
Sub Bytes and Shift Rows (ii) Generating the
Sub Bytes for Encryption and using Look up
table for Decryption (iii) Each clock cycle is
efficiently assigned to complete a set of
operations.

Fig.1(b) AES algorithm for Decryption Flow

3.1 Merger of Sub Bytes and Shift Rows

This merging is performed by calling required
shifted element from the data matrix, instead
of calling element one by one sequentially
from the data matrix. Thereby SUB-BYTE and
SHIFT ROW operations are carried out in one-
step instead of two. Fig. 3 shows how the
merger is performed. The 16 elements are
stored sequentially after each round in a
register file. Using Mux selection, required

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

213

shifted data elements are called (instead of
calling sequentially) from the register file and
put into the State. This merging process would
increase throughput since elements are not
called sequentially and a balance between
throughput and area is maintained.

Fig. 3. Merging of Sub Bytes and Shift Rows

3.2 Generating the Sub Key for Encryption and

using Look up table for Decryption

The SubBytes(S-box) transformation, which

consists of a multiplicative inversion over GF (28)

and an affine

transform is the most critical part in the AES

Algorithm, as far as computational complexity is

concerned. The S-box operation is required both

for encryption and for key expansion. The S-box

dominates the hardware complexity of the AES

circuit. Conventionally the coefficients of the S-

Box and inverse S-box are stored in LUT’s, or a

hard-wired multiplicative inverter over GF (28)

can be used together with the affine

transformation. We propose a multiplicative

inverter together with the affine transformation be

applied to the encryption unit. The LUT’s be used

for storing the coefficients of the inverse S-Box for

the Decryption Unit is shown in Fig.4. (a) (b) Most

approaches use a ROM/RAM-based lookup table

(LUT) to implement the most critical

transformation step in the AES algorithm, the

SubBytes transformation as described in Fig. 2(a).

This approach is cost effective for SRAM-based

FPGAs, The image cannot be displayed. Your

computer may not have enough memory to open

the image, or the image may have been corrupted.

Restart your computer, and then open the file

again. If the red x still appears, you may have to

delete the image and then insert it again.

integrated circuit (ASIC) implementation. Results

from several other projects indicates that the

implementation of an arithmetic circuit in a

composite field to compute the multiplicative

inverse and affine transformation of the S-Box

provides an excellent trade-off between silicon

area and performance. The composite field

implementation was first recommended by the

inventor of Rijndael [9]. Other implementations

based on this idea can be found in [5-8]. However,

no approach has been made so far on using both

the LUT-based approach as well the composite

field implementation. Since the Encryption Unit

and the Key Scheduling Component require the S-

box, we propose that the S-box be generated using

composite field implementation in this case and

that LUT’s be used for storing the coefficients of

the inverse S-box for the Decryption Unit. This

would ensure high throughput as well as less area

resources.The Key Scheduling Component

performs Round Key generation. This round key

could be generated dynamically each round based

on the previous rounds key or they can be

generated at the start and stored in the RAM. The

former case however, would offer much less

buffering.

3.3 Optimization of each clock cycle to

incorporate maximum number of operations

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

214

Various types of hardware architectures for AES

Algorithm are possible. As mentioned earlier,

architecture that offers the best tradeoff between

data throughput and silicon area is targeted in this

work.Each clock cycle is efficiently assigned to

complete a set of operations and the entire

Encryption/decryption round can be completed

with less clock cycles.

4. Performance Analysis

The proposed architecture was implemented using

VHDL and implemented on Xilinx’s Web pack

version 8.2i. The implementations were simulated

for the correct encryption and decryption operation

using the test vectors provided by the AES

submission package [4][11]. The VHDL code of

the design is synthesized, placed and routed using

target device of Xilinx (Virtex2Pro). The

architecture was simulated for verification of the

correct functionality. It is important to determine

the amount of data that the channel can use with

cryptography. The throughput is calculated with

the following formula: Throughput =block size *

frequency / total clock cycles. The Post Route

Simulation analysis is performed. The input and

the cipher key are given to the device and the
output is displayed at the 27th clock cycle
(after 26 cycles),there by achieving a sufficient
throughput rate with a significant compromise
on area. The standard used is 128-bit key and
128-bit data block size, therefore, the Control
Component allows for only 10 rounds of AES
encryption. The number of cycles per
encryption block is 13. The maximum clock
frequency is 142 MHz. The encryption and
decryption throughput is given by 1.4Gbps.
The parameters used to evaluate the quality of
device are summarized in Table II. Two
designs are compared. The original design
based on simple iterative architecture cost
large amount of area with a low throughput.
The proposed design with the three
modifications discussed in section 3 resulted
in a much compact implementation with high
throughput. Besides, it gave optimum usage of
silicon area as only 50% of the resources are

used (XC2VP30ff896). In addition, the speed
is also improved four times.A comparison of
various AES Designs is given in Table III. Only
[14] has used computational arithmetic
(multiplication and affine transform) over GF
(28) to generate the S-box required. All the
other architectures in Table III have made use
of a ROM/RAM based Look up Table (LUT) to
implement this transformation. Jarvinen et al.
and [4] have used much lesser slices than our
work but they have compensated
it by utilizing more BRAM’s. Most designs
have followed a pipeline architecture that has
led to their increased throughput values.
Recently, Hodjat and Ingrid [16]'s FPGA
implementation showed a high throughput of
21.54 Gb/s using a fully pipelined approach
with inner-round pipelining and outer-round
pipelining. In our approach, we have worked
with an iterative structure and with fully
pipelined and resource-sharing methods; we
hope to achieve better throughputs in future.
Though proposed design does not offer a very
high throughput and throughput/slice value
due to lack of pipelining, it offers a significant
decrease in the number of slices required. The
motivation behind this work was to achieve a
tradeoff between throughput with area and
results are satisfactory.

5. Conclusions

The objective of this paper was to present the
hardware implementation of Advanced
Encryption Standard (AES) algorithm. The
importance of the Advanced Encryption
Standard and the significance of area-
throughput balanced implementations of the
Rijindael have examined. We have worked
with an iterative structure and modifications
such as merging of Subbytes and ShiftRows,
Look Up tables for decryption, and
optimization of each clock cycle to incorporate
maximum number of operations etc. have
been successfully implemented. The
encryption and decryption process of Rijndael
algorithm was captured in VHDL language

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

215

and corresponding FPGA implementation
resulted in reduced number of slices and
achieved a data throughput of 1.4 Gbit/sec.
The combination of security, and high-speed
implementation and marginal silicon area
makes it a very good choice for wireless
systems.

References

1. W. Diffle and H.Hellman, “Privacy and
authentication: An Introduction to
cryptography”, Proceedings of
 IEEE, pp 397-427, vol 67, 1979.
2. H. Kuo and I. Verbauwhede, “Architectural
Optimization for a 1.82Gbits/sec VLSI
Implementation of the
 AES Rijindael Algorithm”, 3rd international
workshop cryptographic Hardware and
embedded systems
 (CHES 2001), LNCS2162,Paris, pp 51-64,
May 2001.
3. I. Verbauwhede and H. Kuo, “Design and
performance testing of a 2.29Gbits/sec
Rijindael algorithm”,
 IEEE Journal of solid state circuits, vol38,
No.3, pp 569-572, March 2003.
4. M. McLoone and J. McCanny, “High
Performance Single-Chip FPGA Rijndael
Algorithm
 Implementations,” Proceedings
Cryptographic Hardware and Embedded
Systems Workshop,CHES, Paris,
 May 2001.
5. S. Mangard, M. Aigner, and S. Dominikus,
“A Highly Regular and Scalable AES
Hardware Architecture,”
 IEEETrans. Comp.,vol. 52, no. 4, pp. 483–91,
Apr.2003
 6. A. Satoh et al., “A Compact Rijndael
HARDWARE Architecture with S-Box
Optimization,”
 ASIACRYPT 2001 LNCS, vol. 2248, pp. 239–
54,

7. J. Wolkerstorfer, E. Oswald, and M.
Lamberger, “An ASIC Implementation of the
AES SBoxes,” CT-RSA
 2002, vol. 2271 of LNCS, Springer-Verlag,
pp. 67–78, 2002

[ISSN 2250 - 3765]

