
International journal of Computer Science and its Applications

200

A Case Based Study on Decision Tree Induction with

AVL-Tree

Suneetha Manne
Assistant Professor, Department of IT

V. R. Siddhartha Engineering College

Vijayawada ,Andhra Pradesh, INDIA

suneethamanne74@gmail.com

Suhasini Sodagudi
Assistant Professor, Department of IT

V. R. Siddhartha Engineering College

Vijayawada ,Andhra Pradesh, INDIA

ssuhasini09@gmail.com

Sita Kumari Kotha
Assistant Professor, Department of IT

V. R. Siddhartha Engineering College

Vijayawada ,Andhra Pradesh, INDIA

sitakumari.kotha@gmail.com

Abstract— Data Mining is one of the eminent research fields to

find interesting trends or patterns in large datasets. In order to

work with the numeric or categorical data, the classification

technique suits well for analyzing and processing for wider

variety of large databases. Efficiency and scalability are

fundamental issues concerning data mining in large databases.

This paper describes the stability and quality of quantifiable

elements among the given datasets and presented the

representations of AVL trees for stability and Decision trees for

quality. Further, the approach was extended and implemented

for the employability of the students as large data sets for an

educational institute.

Keywords— Classification, Decision tree induction, Attribute

Oriented Induction, AVL tree

I. INTRODUCTION
Computational efficiency and scalability are two important

and challenging issues in data mining. Data mining is the
automated discovery of nontrivial, previously unknown, and
potentially useful patterns embedded in databases [1]. The
increasing computerization of all aspects of life has led to the
storage of massive amounts of data. Large scale data mining
applications involving complex decision making can access
billions of bytes of data. Hence, the efficiency of such
applications is paramount.

Classification is a key data mining technique whereby
database tuple acting as training samples, are analyzed in order
to produce a model of the given data [2][18]. Each tuple is
assumed to belong to a predefined class, as determined by one
of the attributes, called the classifying attribute. Once derived,
the classification model can be used to categorize future data
samples, as well as provide a better understanding of the
database contents. Classification has numerous applications
including credit approval, product marketing, and medical
diagnosis.

A number of classification techniques from the statistics
and machine learning communities have been proposed
[2][6][7]. A well accepted method of classification is the
induction of decision trees [4][6]. A decision tree is a
flowchart like structure consisting of internal nodes, leaf
nodes, and branches. Each internal node represents a decision,
or test, on a data attribute, and each outgoing branch
corresponds to a possible outcome of the test. Each leaf node
represents a class. In order to classify an unlabeled sample
against the decision tree, a path is traced from the root to a leaf
node which holds the class predicate for that sample. Decision
trees can easily be converted into IFTHEN rules [6] and used
for decision making.

The efficiency of the existing decision tree algorithms,
such as ID3[4], C4.5[6] and CART[6], has been established
for relatively small data sets[8]. Most decision tree algorithms
have restriction that the training tuples should reside in main
memory. In data mining applications, very large training sets
of millions of examples are common. Hence, this restriction
limits the scalability of such algorithms, where the decision
tree construction can become inefficient due to swapping of
the training samples in and out of main and cache memories.

The induction of decision trees from very large training
sets has been previously addressed by the SLIQ [9] and
SPRINT [10] decision tree algorithms. These proposed
presorting techniques on disk resident data sets are too large to
fit in memory. While SLIQ’s scalability, however, is limited
by the use of a memory resident data structure, SPRINT
removes all memory restrictions and hence can handle data
sets that are too large for SLIQ [10]. Unlike SLIQ and
SPRINT, which operate on the raw low level data, we address
the efficiency and scalability issues by proposing a different
approach, consisting of three steps: 1) attribute oriented
induction [11][12], where concept hierarchies are used to
generalize low level data to higher level concepts, 2) relevance
analysis [13], and 3) multilevel mining[17], whereby decision
trees can be induced at different levels of abstraction.

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

201

In the aspect of computer science, an AVL tree is the first
data structure which was invented as a self-balancing binary
search tree. Such trees are used to sustain the stability of
quantifiable distinguishable elements in a given large dataset
[14]. All the operations including search, insert, and delete
take O(log n) time in both the average and worst cases, where
n is the number of nodes in the tree prior to the operation. In
insert and delete operations we observe that trees become
unbalanced and in such cases the tree is required to be
rebalanced by one or more rotations.

A binary tree is an AVL-tree if each node satisfies the BST
property i.e root node is greater than left node and lesser than
the right node and the difference between the heights of the
sub tree should not exceed one. The balance factor of a node
in a AVL tree is the height of its left sub tree minus the height
of its right sub tree (sometimes opposite) and a node with
balance factor 1, 0, or -1 is considered balanced. A node with
any other balance factor is considered unbalanced and requires
rebalancing the tree. The balance factor is either stored
directly at each node or can be computed from the heights of
the sub trees. AVL trees are more statically balanced, so these
are faster for lookup intensive applications.

Statistically, this paper is worked on an educational
enterprise to deal the huge dataset and applying the
classification model by attribute oriented induction method.
The student data is generalized into various categories and
removed irrelevant attributes to obtain a concise set of data
and then at multiple levels data is mined and finally succeeded
in delivering class labels to test the nodes in decision tree in
handling few decisions for instance whether a given student is
eligible for placement or not. The combination of mathematics
and computational capabilities generates the tree which helps
in generalization of data. Hence, decision trees forms the basis
in data mining in extracting the attributes from databases and
correlated to the problem specific in automating a decision
making system. Such trees rate high in information extraction
and prediction which can be achieved by data preprocessing.

The approach is specified as the following sessions.
Session II presents the Related Work, Session III presents the
Classification using Decision Tree Induction, Session IV
specifies the Decision Tree Construction using the proposed
approach and Session V illustrates the proposed Decision Tree
method with AVL trees. We conclude our study in Session VI
and discuss the possible extensions based on our current work.

II. RELATED WORK
Binary tree is a tree which has only 2 branches and these

branches can in turn have 2 sub branches and so on. Tree
structures perform all the basic operations like insert, update,
delete and search can be done with time proportionality as a
constant to the height of the tree. The tree of short height is
easily understandable and we need to maintain the height as a
running component. To ensure this red-black trees, AVL trees
must be used. B-trees are balanced trees that try to minimize
the number of disk accesses. B-trees are good for searches in
linear manner, but cause some overhead issues in wasting

space. B-trees have to be rebuilt after a crash and so these are
not more valuable

Regression tree is quite similar to a B-tree used for
indexing multidimensional information [4]. Here in this
approach, a node is allowed to find its way downward the tree
to the appropriate location. Each entry within a non leaf node
stores two pieces of information: about its child node and its
bounding box. Each entry within a leaf node stores two pieces
of information: actual data element and its bounding box. In
insertion and deletion algorithms, the bounding boxes from the
nodes will ensure that closer elements are placed in the same
leaf node. Similarly, the searching algorithms (e.g.,
intersection, containment, nearest) use the bounding boxes to
decide whether or not to search inside a child node.
Appropriately, most of the nodes in the tree are never touched
and used during a search. In this scenario, just like B-trees, R-
trees are viewed suitable for databases, where nodes can be
paged to memory when needed. Likewise, node insertion and
deletion are difficult here.

AVL trees are performed exactly as unbalanced binary
search tree [15]. In a look up process of a node, once a node
has been found in a balanced tree, the next or previous nodes
can be explored by the reduction of the value of an asset by
prorating its cost in a series of time. Few cases require
traversing up to 2×log(n) links where n is the number of nodes
in the tree. Exploring all n nodes in this manner will use each
link exactly twice, and there will be (n-1) links, at the rate of 2
×(n-1)/n series of time, approximately 2.

Decision tree learning is a method in data mining that uses
decision tree as a predictive model and uses the tree to create a
model that predicts the value of a target variable based on
several input variables. The leaves represent the classifications
and the branches represent the conjunctions that lead to
different classifications. The meta data that is stored in non
leaf node affects in sorting of the tree. For every possible
value of the input variable, each non leaf node represents one
of the input variables and it is represented as an edge to
children. For the given values of the input variables, each leaf
node denotes a value of the target variable and it is represented
by the path from the root to the leaf. A tree can be understood
by generalizing the source set into subsets based on an
attribute value test. This process is repeated on each derived
subset in a recursive manner until the subset at a node all has
the same value of the target variable, or when generalization
can no longer adds meaning to the predictions.

III. Classification Using Decision
Tree Induction

The stability and quality regarding the data mining of large
datasets are composed of the following

1) Generalization by attribute-oriented induction, to
compress the training data. This includes storage of the
generalized student data to allow users to view the various
data abstractions

2) Relevance analysis, to remove unnecessary data
attributes, thereby further compacting the training data.

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

202

3) Multilevel mining, which combines the induction of
decision trees with knowledge in concept hierarchies.

A. Attribute-Oriented Induction(AOI)
Generalization is the way of processing the raw data of any

database may contain many attributes to be reduced by
considering only the required attributes and continuing the
process [16]. Attribute-Oriented induction is generalizing the
data in to the required format that can replace primitive data
into higher types (attribute removal). It allows the user to view
the data at more meaningful abstractions. Furthermore,
scalability issue is addressed in attribute-oriented induction by
compressing the training data. In this paper we considered an
Educational campus-placement center example, in which an
attribute having all sub-nodes that has a class label ―yes‖ can
be replaced by a single node with class label ―yes‖ and can
check the other attributes against the conditions assumed.
Attribute removal further compact the training data and
reduces the bushiness of the resulting trees. The degree of
generalization is controlled by a threshold. If the number of
distinct values of an attribute is less than or equal to this
threshold, then further generalization of the attribute is halted.
Hence, attribute oriented induction not only provides
increasing efficiency, also results in classification trees that
are more understandable, smaller, and easier to interpret than
trees obtained from methods operating on ungeneralized sets
of low-level data.

B. Relevance Analysis
The uncertainty coefficient U(A) [17] for attribute A is

used to further reduce the size of the generalized training data.
U(A) is obtained by normalizing the information gain of A so
that U(A) ranges from 0 (meaning statistical independence
between A and the classifying attribute) to 1 (strongest degree
of relevance between the two attributes). The user has the
option of retaining either the n most relevant attributes or all
attributes whose uncertainty coefficient value is greater than a
pre-specified uncertainty threshold, where n and the threshold
are user-defined. Note that it is much more efficient to apply
the relevance analysis [13] to the generalized data rather than
to the original training data

),,,(

)(),,()(

21

2,1

m

m

PPPI

AEPPPIAU

where

m

i

iim PPPPPPPI
1

21 /log),,,(

and),,()(1

1

1

mjj

k

j

mjj

PPI
P

PP
AE

Here P is the set of the final generalized training data, where P

contains m distinct values defining with the output distinct

output class Pi (for i = 1, 2, 3,…,m) and P contains Pi samples

for each pi, then the expected information needed to classify a

given sample is I (P1, P2,…, Pm).

For example: we have the attribute A with the generalized
final value {a1 ,a2 ,a3 , ...,ak} can be partition P into {C1 ,C2 ,C3 ,
... ,Ck} , where Cj contain those samples in C that have value aj

of A. The expected information based on partitioning by A is
given by E(A) [17] equation, which is the average of the
expected information. The gain (A) is the difference of the two
calculations. If the uncertainty coefficient for attribute A is 0,
it means no matter how we partition the attribute A, we won’t
get lose information. So the attributes A has no effect on the
building of the final decision tree. If U (A) is 1, it means that
we can use this attribute to classify the final decision tree. This
is similar to find the max goodness in the class to find which
attribute we can use to classify the final decision tree.

C. Multilevel Mining
Multilevel Mining method mines the data at different levels in

the form of a decision tree which serves the desired outcome.

It takes the input as Attribute oriented induction output and

mines. The AVL-Tree will only support the decision making,

while remaining all the other conditions have to be further

generated. The information gain in attribute selection criterion

has a tendency to favor multi valued attributes [17].The

induction of decision trees is done at different levels of

abstraction by employing the knowledge stored in the concept

hierarchies. Furthermore, once a decision tree has been

derived, the concept hierarchies can be used to generalize

individual nodes in the tree and can reclassify data for the

newly specified abstraction level. Generalization to very high

concept levels can result in decision trees of little use since

overgeneralization may cause the loss of interesting and

important sub concepts.

IV. Decision Tree Construction
The main idea of this paper is to construct a decision tree

based on the proposed steps and prune it accordingly. The
basic Decision Tree Construction Algorithm 1 is shown in
Figure 1 which constructs a decision tree for the given training
data.

Apart from generalization threshold, we also use two other
thresholds for improving the efficiency namely, exception
threshold (€) and classification threshold (ĸ). Because of the
recursive partitioning, some resulting data subsets may
become so small that partitioning them further would have no
statistically significant basis. These insignificant data subsets
are statistically determined by the exception threshold. If the
portion of samples in a given subset is less than the threshold,
further partitioning of the subset is halted. Instead, a leaf node
is created which stores the subset and class distribution of the
subset samples.

In this process, the candidate with maximum information
gain is selected as ―test‖ attribute and is partitioned. The
conditions, whether the frequency of the majority class in a
given subset is greater than the classification threshold, or
whether the percentage of training objects represented by the
subset is less than the exception threshold, are used to
terminate classification. Otherwise further classification will
be performed recursively.

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

203

We consider a simple example to explain all the detail
steps to generalize the final classification tree and find out the
classification rules. Table I depicts a raw training data of
education level in relation with the merit and skills.

Step 1 : Consider the student data as training data set

TABLE I. TRAINING DATA AS STUDENT DATA

Step2: Perform generalization by AOI method

Stid Degree

%

Age Back

logs

Company

type

AOI category

100 75 20 0 software
Higher

studies
Yes

101 72 20 1 software job No

102 69 21 0 Software job Yes

103 60 20 2 core
Higher

studies
yes

- - - - - - -

TABLE II. GENERALIZED TRAINING STUDENT DATA

The design procedure is implemented with the real world
information about a study on educational campus and its
placements criteria. In this regard, we started with a flowchart
how the generalization of a large dataset can be done and it is
depicted above in Table II.

Figure1 shows the proposed flow diagram to study and
perform classification on large dataset.

Figure 1. Proposed Flow chart representing classification on large Dataset

The training data is compressed with the storage of the
generalized data which is done in two phases by attribute-
oriented induction and multilevel induction.

Attribute-oriented induction is a knowledge discovery tool
which allows the mining of large databases. Firstly, it allows
the raw data to be handled at higher conceptual levels.
Generalization of the training data is achieved by replacing
primitive level data by higher level concepts. This induction
method allows the user to view the data at more meaningful
abstractions which optimizes the scalability issue by
compressing the training data. After generalization, the
training data will be much more compact than the original
training data and still involves fewer input/output operations.
Sometimes generalization involves removal of attributes
without affecting the original database which further
compresses the bushiness of the resulting trees.

To represent the data in user’s view, the attribute-oriented
induction results in classification trees that is more
understandable, smaller, and easy for interpreting sets of low-
level data. The degree of generalization is controlled by
generalization threshold. Multilevel induction is the last step
in generalization which combines the data from different
levels of abstraction obtained by attribute-oriented induction
with the knowledge stored in the hierarchies. Once a decision
tree has been derived, the concept hierarchies can be used to
generalize individual nodes in the tree and can reclassify data
for the newly specified abstraction level.

The main idea of this paper is to construct a decision tree
based on these proposed steps and prune it accordingly. The
basic Decision Tree Construction Algorithm 1 is shown in
Figure II, which constructs a decision tree for the given
training data. Decision trees are data mining technology that
has been around in a form very similar to the technology of
today for almost twenty years now and early versions of the
algorithms date back in the 1960s. Often times these

Stid UG

/PG

Previous

history

of study

based on

merit

age Bac

k

logs

if

any

Company

 type

AOI Cate

gory

100 UG B.Tech 20 0 software
Higher

studies
Yes

101 UG B.Tech 20 1 software job No

102 UG B.Tech 21 0 Software job Yes

103 UG B.Tech 20 2 Core
Higher
studies

yes

- - - - - - - -

generalization

Test

node

testno

de

testno

de

no yes no yes

Trainin
g

data

stop

start

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

204

techniques were originally developed for statisticians to
automate the process of determining which fields in their
database were actually useful or correlated with the particular
problem that they were trying to understand.

Algorithm 1: Decision Tree Construction

DecisionTree (Node n, DataPartition D)

{

Apply AOI-Method to D to find

splitting-criterion of node n

Let k be the number of children of n

if k>O do

Create k children c1, c2,..., ck of n

Use splitting-criterion to partition D into D1,

D2..., Dk

for i = 1 to k do

DecisionTree(ci, Di)

end for

end if

Assign priority to the nodes based on the level;

}

Figure 2. Decision Tree

Step 3 : Data has to be mined at different levels for the users to

view multiple abstractions of data.

Figure 3. Decision Tree Construction for the Training Data

The Table III shows the selected data among the training
data for placement of students in terms of quality and stability.

Stid Company type Class Label

102 Software Yes

- - -

TABLE III SAMPLE OUTPUT OBTAINED FROM THE TRAING DATASET

V. Decision tree method with
AVL trees

In this paper a decision tree is constructed based on the
proposed steps and prune it accordingly and is shown in
section IV, which constructs a decision tree for the given
training data. Furthermore, once a decision tree has been
derived with the proposed decision tree creation algorithm, the
tree is formed as shown in Figure 3 with the concept
hierarchies that can be used to generalize individual nodes in
the tree and can reclassify data for the newly specified
abstraction level.

Therefore, we proposed an algorithm called Node Merge,
which allows merging of nodes in the tree thereby
discouraging over- partitioning of the data. This algorithm also
uses the concept of Height-Balancing in the tree using AVL
trees depending on the priority checks for every node. This
enhances the overall performance and final decision tree
constructed is efficient enough to derive the classification
rules effectively.

Algorithm 2 : Node Merge

Node_Merge(Node Data_A, Node Data_B)

{

Check priorities for node _A and node _ B;

if both the priorities > checkpoint then

{

Link _AB = remove _ link_ joining (Node Data _ A,

Node Data _B);

union = Node Data _ A. merge _with(Node Data _ B);

for (related node: nodes _ incident _to _either (Node Data _ A,

Node Data _B))

link _RA = link _ joining (related _node, Node Data _ A);

link _RB = link _joining (related _ node, Node Data _ B);

disjoin (related _ node, Node Data _ A);

disjoin (related _ node, Node Data _ B);

join (related _ node, union, merged _ link);

}

else print (Node have high priority, cannot be merged);

Figure 4. Decision tree construction

Algorithm 3 : To perform height balance

Perform _ balance _height (union, link _AB)

1.Check the tree obtained is in balanced.

2. if found then check the balance factor of the left/right sub

tree is heavy on left /right

3. if tree’s right sub tree is heavy ―left‖ then perform double

―left‖ rotation else

 Perform single ―left‖ rotation

4. if tree’s left sub tree is heavy ―right‖ then perform double

―right‖ rotation else

 Perform single ―right‖ rotation

5.Check for path preservations

Figure 5. Height-Balancing using AVL Tree Concept

This algorithm also uses the concept of Height-Balancing
in the tree using AVL trees depending on the priority checks
for every node. This enhances the overall performance, as the
final decision tree constructed is efficient enough to derive the
classification rules effectively.

Right-Right case and Right-Left case: when the balance
factor of R is found as -2 , then the ―right‖ sub tree is heavier
than the left sub tree of the given node and it needs to be
balanced by checking the balance factor, r of the right child. If
r is less than zero then apply single left rotation with respect to
R as root. If r is +1 then apply double left rotation (first

 Student

id

 qualification age

UG/PG 1/>1

Percentage
secured

 backlogs

 </> =24 SSC/12

th

/UG/PG

[ISSN 2250 - 3765]

International journal of Computer Science and its Applications

205

rotation will be right as r as root and second rotation is a left
rotation as R as root)

Left-Left case and Left-Right case: when the balance factor
of R is found as +2 , then the ―left‖ sub tree is heavier than the
right sub tree of the given node and it needs to be balanced by
checking the balance factor, r of the left child. If r is greater
than zero then apply ―single right‖ rotation with respect to R
as root. If r is -1 then apply ―double right‖ rotation (first
rotation will be left as r as root and second rotation is a right
rotation as R as root). This approach is shown in Figure 6.

Figure 6. AVL Tree Right and Left single rotations

The final Decision Tree is constructed by using the above
Algorithm 3, Balance Height. From the figure 7, it is clear that
tree is well constructed and also balanced at every node.

As mentioned in the algorithm, the path to different levels
are updated and preserved accordingly. In this way improved
scalability and efficiency of the data classification with
Decision Tree enhancement.

Figure 7. Final decision tree with AVL tree concept

VI. Extensions and Conclusions

This paper proposes a approach for classification using
Decision Tree Induction and it clearly shows how the
algorithm generalizes the concept hierarchies from the training
data by attribute-oriented induction (AOI). By generalization
of the training data, it minimizes the requirement of the
training data and makes the decision tree result meaningful
using the AVL trees concept. The proposed algorithm
provides a general framework that can be used with any
existing Decision Tree Construction algorithms. In an effort to

identify and rectify the restriction that limits the efficiency and
scalability of other algorithms, we have proposed an efficient
yet simple solution which will overcome them. Our future
work involves further refinement in different applications of
the proposed algorithm.

References
[1] W. J. Frawley, G. PiatetskyShapiro, and C. J. Matheus.Knowledge

discovery in databases: An overview. In G. PiatetskyShapiro and W. J.
Frawley, editors, Knowledge Discoveryin Databases, pages 1–27.
AAAI/MIT Press,1991

[2] W. J. Frawley, G. PiatetskyShapiro,and C. J. Matheus.Knowledge
discovery in databases: An overview. In G. PiatetskyShapiro and W. J.
Frawley, editors, Knowledge Discovery in Databases, pages 1–27.
AAAI/MIT Press,1991

[3] G. PiatetskyShapiro and W. J. Frawley. Knowledge Discovery in
Databases. AAAI/MIT Press, 1991.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification of
Regression Trees. Wadsworth, 1984.

[5] U. M. Fayyad, S. G. Djorgovski, and N. Weir. Automating the analysis
and cataloging of sky surveys. In U. Fayyad, G. PiatetskyShapiro, P. J.
yth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, pages 471–493. AAAI/MIT Press, 1996.

[6] R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986.

[7] S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn:
Classification and Prediction Methods from Statistics,Neural Nets,
Machine Learning, and Expert Systems.Morgan Kaufman, 1991.

[8] L. B. Holder. Intermediate decision trees. In Proc. 14th Intl. Joint Conf.
on Artificial Intelligence, pages 1056–1062, Montreal, Canada, Aug
1995.

[9] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier
for data mining. In Proc. 1996 Intl. Conf. on Extending Database
Technology (EDBT’96), Avignon, France, March 1996.

[10] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: a scalable parallel
classifier for data mining. In Proc. 22nd Intl. Conf. Very Large Data
Bases (VLDB), pages 544–555, Mumbai (Bombay), India, 1996.

[11] J. Han, Y. Cai, and N. Cercone. Datadriven Discovery of quantitative
rules in relational databases. IEEE Trans.Knowledge and Data
Engineering, 5:29–40, 1993.

[12] J. Han and Y. Fu. Exploration of the power of attributeoriented induction
in data mining. In U. Fayyad,G. PiatetskyShapiro,P. Smyth, and R.
Uthurusamy, editors, Advancesin Knowledge Discovery and Data
Mining, pages 399–421.AAAI/MIT Press, 1996.

[13] D. H. Freeman, Jr. Applied Categorical Data Analysis. Marcel Dekker,
Inc., New York, NY, 1987.

[14] V. K. Vaishnavi, "Multidimensional height-balanced trees," IEEE Trans.
Comput., vol. C-33, pp. 334-343, 1984

[15] Tomoki Watanuma, Tomonobu Ozaki, and Takenao Ohkawa.
―Decision Tree Construction from Multidimensional Structured Data.
Sixth IEEE International Conference on Data Mining – Workshops,
2006.

[16] J. Han, Y. Cai, and N. Cercone. Datadriven discovery of quantitative
rules in relational databases. IEEE Trans. Knowledge and Data
Engineering, 5:29–40, 1993.

[17] Micheline Kamber, Lara Winstone, Wan Gong, Shang Cheng, Jiawei
Han, ―Generalization and Decision Tree Induction: Efficient
Classification in Data Mining‖, Canada V5A IS6, 1996.

[18] XindongWu · Vipin Kumar · J. Ross Quinlan · Joydeep Ghosh · Qiang
Yang · Hiroshi Motoda · Geoffrey J. McLachlan · Angus Ng · Bing Liu
· Philip S. Yu · Zhi-Hua Zhou · Michael Steinbach · David J. Hand ·
Dan Steinberg. A survey paper on ―Top 10 algorithms in data mining‖
2007.

Student Id

Backlogs

(<=1) or (>1)
% Secured

(>=60) or (<60)

Company type

(s/w or core)
Area of interest

(higher studies / job)
Age

(<=24)or (>24)
Reservation

Category (y /n)

CSE
/IT

/ECE

Mech
/Civil
/EEE

No Yes Yes No Yes No

9

1 2

3 7

7

2 3

9
1

Right Rotation

Left Rotation

CSE/

IT/ECE

[ISSN 2250 - 3765]

