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Abstract— Data Mining is one of the eminent research fields to 

find interesting trends or patterns in large datasets. In order to 

work with the numeric or categorical data, the classification 

technique suits well for analyzing and processing for wider 

variety of large databases. Efficiency and scalability are 

fundamental issues concerning data mining in large databases. 

This paper describes the stability and quality of quantifiable 

elements among the given datasets and presented the 

representations of AVL trees for stability and Decision trees for 

quality. Further, the approach was extended and implemented 

for the employability of the students as large data sets for an 

educational institute. 

 

Keywords— Classification, Decision tree induction, Attribute 

Oriented Induction, AVL tree 

I. INTRODUCTION 
Computational efficiency and scalability are two important 

and challenging issues in data mining. Data mining is the 
automated discovery of nontrivial, previously unknown, and 
potentially useful patterns embedded in databases [1]. The 
increasing computerization of all aspects of life has led to the 
storage of massive amounts of data. Large scale data mining 
applications involving complex decision making can access 
billions of bytes of data. Hence, the efficiency of such 
applications is paramount. 

Classification is a key data mining technique whereby 
database tuple acting as training samples, are analyzed in order 
to produce a model of the given data [2][18]. Each tuple is 
assumed to belong to a predefined class, as determined by one 
of the attributes, called the classifying attribute. Once derived, 
the classification model can be used to categorize future data 
samples, as well as provide a better understanding of the 
database contents. Classification has numerous applications 
including credit approval, product marketing, and medical 
diagnosis. 

A number of classification techniques from the statistics 
and machine learning communities have been proposed 
[2][6][7]. A well accepted method of classification is the 
induction of decision trees [4][6]. A decision tree is a 
flowchart like structure consisting of internal nodes, leaf 
nodes, and branches. Each internal node represents a decision, 
or test, on a data attribute, and each outgoing branch 
corresponds to a possible outcome of the test. Each leaf node 
represents a class. In order to classify an unlabeled sample 
against the decision tree, a path is traced from the root to a leaf 
node which holds the class predicate for that sample. Decision 
trees can easily be converted into IFTHEN rules [6] and used 
for decision making.  

The efficiency of the existing decision tree algorithms, 
such as ID3[4], C4.5[6] and CART[6], has been established 
for relatively small data sets[8]. Most decision tree algorithms 
have restriction that the training tuples should reside in main 
memory. In data mining applications, very large training sets 
of millions of examples are common. Hence, this restriction 
limits the scalability of such algorithms, where the decision 
tree construction can become inefficient due to swapping of 
the training samples in and out of main and cache memories. 

The induction of decision trees from very large training 
sets has been previously addressed by the SLIQ [9] and 
SPRINT [10] decision tree algorithms. These proposed 
presorting techniques on disk resident data sets are too large to 
fit in memory. While SLIQ’s scalability, however, is limited 
by the use of a memory resident data structure, SPRINT 
removes all memory restrictions and hence can handle data 
sets that are too large for SLIQ [10]. Unlike SLIQ and 
SPRINT, which operate on the raw low level data, we address 
the efficiency and scalability issues by proposing a different 
approach, consisting of three steps: 1) attribute oriented 
induction [11][12], where concept hierarchies are used to 
generalize low level data to higher level concepts, 2) relevance 
analysis [13], and 3) multilevel mining[17], whereby decision 
trees can be induced at different levels of abstraction. 
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In the aspect of computer science, an AVL tree is the first 
data structure which was invented as a self-balancing binary 
search tree. Such trees are used to sustain the stability of 
quantifiable distinguishable elements in a given large dataset 
[14]. All the operations including search, insert, and delete 
take O(log n) time in both the average and worst cases, where 
n is the number of nodes in the tree prior to the operation. In 
insert and delete operations we observe that trees become 
unbalanced and in such cases the tree is required to be 
rebalanced by one or more rotations.  

A binary tree is an AVL-tree if each node satisfies the BST 
property i.e root node is greater than left node and lesser than 
the right node and the difference between the heights of the 
sub tree should not exceed one. The balance factor of a node 
in a AVL tree is the height of its left sub tree minus the height 
of its right sub tree (sometimes opposite) and a node with 
balance factor 1, 0, or -1 is considered balanced. A node with 
any other balance factor is considered unbalanced and requires 
rebalancing the tree. The balance factor is either stored 
directly at each node or can be computed from the heights of 
the sub trees. AVL trees are more statically balanced, so these 
are faster for lookup intensive applications.  

Statistically, this paper is worked on an educational 
enterprise to deal the huge dataset and applying the 
classification model by attribute oriented induction method. 
The student data is generalized into various categories and 
removed irrelevant attributes to obtain a concise set of data 
and then at multiple levels data is mined and finally succeeded 
in delivering class labels to test the nodes in decision tree in 
handling few decisions for instance whether a given student is 
eligible for placement or not. The combination of mathematics 
and computational capabilities generates the tree which helps 
in generalization of data. Hence, decision trees forms the basis 
in data mining in extracting the attributes from databases and 
correlated to the problem specific in automating a decision 
making system. Such trees rate high in information extraction 
and prediction which can be achieved by data preprocessing.  

The approach is specified as the following sessions. 
Session II presents the Related Work, Session III presents the 
Classification using Decision Tree Induction, Session IV 
specifies the Decision Tree Construction using the proposed 
approach and Session V illustrates the proposed Decision Tree 
method with AVL trees. We conclude our study in Session VI 
and discuss the possible extensions based on our current work.  

II. RELATED WORK 
Binary tree is a tree which has only 2 branches and these 

branches can in turn have 2 sub branches and so on. Tree 
structures perform all the basic operations like insert, update, 
delete and search can be done with time proportionality as a 
constant to the height of the tree. The tree of short height is 
easily understandable and we need to maintain the height as a 
running component. To ensure this red-black trees, AVL trees 
must be used. B-trees are balanced trees that try to minimize 
the number of disk accesses. B-trees are good for searches in 
linear manner, but cause some overhead issues in wasting 

space. B-trees have to be rebuilt after a crash and so these are 
not more valuable 

Regression tree is quite similar to a B-tree used for 
indexing multidimensional information [4]. Here in this 
approach, a node is allowed to find its way downward the tree 
to the appropriate location. Each entry within a non leaf node 
stores two pieces of information: about its child node and its 
bounding box. Each entry within a leaf node stores two pieces 
of information: actual data element and its bounding box. In 
insertion and deletion algorithms, the bounding boxes from the 
nodes will ensure that closer elements are placed in the same 
leaf node. Similarly, the searching algorithms (e.g., 
intersection, containment, nearest) use the bounding boxes to 
decide whether or not to search inside a child node. 
Appropriately, most of the nodes in the tree are never touched 
and used during a search. In this scenario, just like B-trees, R-
trees are viewed suitable for databases, where nodes can be 
paged to memory when needed. Likewise, node insertion and 
deletion are difficult here. 

AVL trees are performed exactly as unbalanced binary 
search tree [15]. In a look up process of a node, once a node 
has been found in a balanced tree, the next or previous nodes 
can be explored by the reduction of the value of an asset by 
prorating its cost in a series of time. Few cases require 
traversing up to 2×log(n) links where n is the number of nodes 
in the tree. Exploring all n nodes in this manner will use each 
link exactly twice, and there will be (n-1) links, at the rate of 2 
×(n-1)/n series of time, approximately 2. 

Decision tree learning is a method in data mining that uses 
decision tree as a predictive model and uses the tree to create a 
model that predicts the value of a target variable based on 
several input variables. The leaves represent the classifications 
and the branches represent the conjunctions that lead to 
different classifications. The meta data that is stored in non 
leaf node affects in sorting of the tree. For every possible 
value of the input variable, each non leaf node represents one 
of the input variables and it is represented as an edge to 
children. For the given values of the input variables, each leaf 
node denotes a value of the target variable and it is represented 
by the path from the root to the leaf. A tree can be understood 
by generalizing the source set into subsets based on an 
attribute value test. This process is repeated on each derived 
subset in a recursive manner until the subset at a node all has 
the same value of the target variable, or when generalization 
can no longer adds meaning to the predictions. 

III. Classification Using Decision 
Tree Induction 

The stability and quality regarding the data mining of large 
datasets are composed of the following 

1) Generalization by attribute-oriented induction, to 
compress the training data. This includes storage of the 
generalized student data to allow users to view the various 
data abstractions 

2) Relevance analysis, to remove unnecessary data 
attributes, thereby further compacting the training data. 
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3) Multilevel mining, which combines the induction of 
decision trees with knowledge in concept hierarchies.  

A. Attribute-Oriented Induction(AOI) 
Generalization is the way of processing the raw data of any 

database may contain many attributes to be reduced by 
considering only the required attributes and continuing the 
process [16]. Attribute-Oriented induction is generalizing the 
data in to the required format that can replace primitive data 
into higher types (attribute removal). It allows the user to view 
the data at more meaningful abstractions. Furthermore, 
scalability issue is addressed in attribute-oriented induction by 
compressing the training data. In this paper we considered an 
Educational campus-placement center example, in which an 
attribute having all sub-nodes that has a class label ―yes‖ can 
be replaced by a single node with class label ―yes‖ and can 
check the other attributes against the conditions assumed. 
Attribute removal further compact the training data and 
reduces the bushiness of the resulting trees. The degree of 
generalization is controlled by a threshold. If the number of 
distinct values of an attribute is less than or equal to this 
threshold, then further generalization of the attribute is halted. 
Hence, attribute oriented induction not only provides 
increasing efficiency, also results in classification trees that 
are more understandable, smaller, and easier to interpret than 
trees obtained from methods operating on ungeneralized sets 
of low-level data.  

B. Relevance Analysis 
The uncertainty coefficient U(A) [17] for attribute A is 

used to further reduce the size of the generalized training data. 
U(A) is obtained by normalizing the information gain of A so 
that U(A) ranges from 0 (meaning statistical independence 
between A and the classifying attribute) to 1 ( strongest degree 
of relevance between the two attributes). The user has the 
option of retaining either the n most relevant attributes or all 
attributes whose uncertainty coefficient value is greater than a 
pre-specified uncertainty threshold, where n and the threshold 
are user-defined. Note that it is much more efficient to apply 
the relevance analysis [13] to the generalized data rather than 
to the original training data 
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Here P is the set of the final generalized training data, where P 

contains m distinct values defining with the output distinct 

output class Pi (for i = 1, 2, 3,…,m) and P contains Pi samples 

for each pi, then the expected information needed to classify a 

given sample is I (P1, P2,…, Pm ).  

 

For example: we have the attribute A with the generalized 
final value {a1 ,a2 ,a3 , ...,ak} can be partition P into {C1 ,C2 ,C3 , 
... ,Ck} , where Cj contain those samples in C that have value aj 

of A. The expected information based on partitioning by A is 
given by E(A) [17] equation, which is the average of the 
expected information. The gain (A) is the difference of the two 
calculations. If the uncertainty coefficient for attribute A is 0, 
it means no matter how we partition the attribute A, we won’t 
get lose information. So the attributes A has no effect on the 
building of the final decision tree. If U (A) is 1, it means that 
we can use this attribute to classify the final decision tree. This 
is similar to find the max goodness in the class to find which 
attribute we can use to classify the final decision tree.  

C. Multilevel Mining 
Multilevel Mining method mines the data at different levels in 

the form of a decision tree which serves the desired outcome. 

It takes the input as Attribute oriented induction output and 

mines. The AVL-Tree will only support the decision making, 

while remaining all the other conditions have to be further 

generated. The information gain in attribute selection criterion 

has a tendency to favor multi valued attributes [17].The 

induction of decision trees is done at different levels of 

abstraction by employing the knowledge stored in the concept 

hierarchies. Furthermore, once a decision tree has been 

derived, the concept hierarchies can be used to generalize 

individual nodes in the tree and can reclassify data for the 

newly specified abstraction level. Generalization to very high 

concept levels can result in decision trees of little use since 

overgeneralization may cause the loss of interesting and 

important sub concepts.  

IV. Decision Tree Construction 
The main idea of this paper is to construct a decision tree 

based on the proposed steps and prune it accordingly. The 
basic Decision Tree Construction Algorithm 1 is shown in 
Figure 1 which constructs a decision tree for the given training 
data. 

Apart from generalization threshold, we also use two other 
thresholds for improving the efficiency namely, exception 
threshold (€) and classification threshold (ĸ). Because of the 
recursive partitioning, some resulting data subsets may 
become so small that partitioning them further would have no 
statistically significant basis. These insignificant data subsets 
are statistically determined by the exception threshold. If the 
portion of samples in a given subset is less than the threshold, 
further partitioning of the subset is halted. Instead, a leaf node 
is created which stores the subset and class distribution of the 
subset samples.  

In this process, the candidate with maximum information 
gain is selected as ―test‖ attribute and is partitioned. The 
conditions, whether the frequency of the majority class in a 
given subset is greater than the classification threshold, or 
whether the percentage of training objects represented by the 
subset is less than the exception threshold, are used to 
terminate classification. Otherwise further classification will 
be performed recursively.  
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We consider a simple example to explain all the detail 
steps to generalize the final classification tree and find out the 
classification rules. Table I depicts a raw training data of 
education level in relation with the merit and skills.  

 

Step 1 : Consider the student data as training data set 

TABLE I.  TRAINING DATA AS STUDENT DATA 

Step2: Perform generalization by AOI method  

Stid Degree 

% 

Age Back 

logs 

Company  

type 

AOI category 

100 75 20 0 software 
Higher 

studies 
Yes 

101 72 20 1 software job No 

102 69 21 0 Software job Yes 

103 60 20 2 core 
Higher 

studies 
yes 

- - - - - - - 

TABLE II.  GENERALIZED TRAINING STUDENT DATA 

The design procedure is implemented with the real world 
information about a study on educational campus and its 
placements criteria. In this regard, we started with a flowchart 
how the generalization of a large dataset can be done and it is 
depicted above in Table II. 

Figure1 shows the proposed flow diagram to study and 
perform classification on large dataset. 

 

Figure 1.  Proposed Flow chart representing classification on large Dataset 

The training data is compressed with the storage of the 
generalized data which is done in two phases by attribute-
oriented induction and multilevel induction. 

Attribute-oriented induction is a knowledge discovery tool 
which allows the mining of large databases. Firstly, it allows 
the raw data to be handled at higher conceptual levels. 
Generalization of the training data is achieved by replacing 
primitive level data by higher level concepts. This induction 
method allows the user to view the data at more meaningful 
abstractions which optimizes the scalability issue by 
compressing the training data. After generalization, the 
training data will be much more compact than the original 
training data and still involves fewer input/output operations. 
Sometimes generalization involves removal of attributes 
without affecting the original database which further 
compresses the bushiness of the resulting trees.  

To represent the data in user’s view, the attribute-oriented 
induction results in classification trees that is more 
understandable, smaller, and easy for interpreting sets of low-
level data. The degree of generalization is controlled by 
generalization threshold. Multilevel induction is the last step 
in generalization which combines the data from different 
levels of abstraction obtained by attribute-oriented induction 
with the knowledge stored in the hierarchies. Once a decision 
tree has been derived, the concept hierarchies can be used to 
generalize individual nodes in the tree and can reclassify data 
for the newly specified abstraction level.  

The main idea of this paper is to construct a decision tree 
based on these proposed steps and prune it accordingly. The 
basic Decision Tree Construction Algorithm 1 is shown in 
Figure II, which constructs a decision tree for the given 
training data. Decision trees are data mining technology that 
has been around in a form very similar to the technology of 
today for almost twenty years now and early versions of the 
algorithms date back in the 1960s.  Often times these 

Stid UG 
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Previous 
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if 
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gory 
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techniques were originally developed for statisticians to 
automate the process of determining which fields in their 
database were actually useful or correlated with the particular 
problem that they were trying to understand.  

Algorithm 1: Decision Tree Construction  

DecisionTree (Node n, DataPartition D)  

{  

Apply AOI-Method to D to find  

splitting-criterion of node n  

Let k be the number of children of n  

if k>O do  

Create k children c1, c2,..., ck of n  

Use splitting-criterion to partition D into D1,  

D2..., Dk  

for i = 1 to k do  

DecisionTree(ci, Di)  

end for  

end if  

Assign priority to the nodes based on the level; 

} 

Figure 2.  Decision Tree  

Step 3 : Data has to be mined at different levels for the users to 

view multiple abstractions of data. 

 
Figure 3.  Decision Tree Construction for the Training Data   

The Table III shows the selected data among the training 
data for placement of students in terms of quality and stability. 

Stid Company type Class Label 

102 Software Yes 

- - - 

TABLE III SAMPLE OUTPUT OBTAINED FROM THE TRAING DATASET 

V. Decision tree method with 
AVL trees   

In this paper a decision tree is constructed based on the 
proposed steps and prune it accordingly and is shown in 
section IV, which constructs a decision tree for the given 
training data. Furthermore, once a decision tree has been 
derived with the proposed decision tree creation algorithm, the 
tree is formed as shown in Figure 3 with the concept 
hierarchies that can be used to generalize individual nodes in 
the tree and can reclassify data for the newly specified 
abstraction level. 

Therefore, we proposed an algorithm called Node Merge, 
which allows merging of nodes in the tree thereby 
discouraging over- partitioning of the data. This algorithm also 
uses the concept of Height-Balancing in the tree using AVL 
trees depending on the priority checks for every node. This 
enhances the overall performance and final decision tree 
constructed is efficient enough to derive the classification 
rules effectively. 

Algorithm 2 : Node Merge 

Node_Merge( Node Data_A, Node Data_B)  

{  

Check priorities for node _A and node _ B;  

if both the priorities > checkpoint then  

{  

Link _AB = remove _ link_ joining (Node Data _ A,  

Node Data _B);  

union = Node Data _ A. merge _with(Node Data _ B);  

for (related node: nodes _ incident _to _either (Node Data _ A, 

Node Data _B))  

link _RA = link _ joining (related _node, Node Data _ A);  

link _RB = link _joining (related _ node, Node Data _ B);  

disjoin (related _ node, Node Data _ A);  

disjoin (related _ node, Node Data _ B);  

join (related _ node, union, merged _ link);  

}  

else print (Node have high priority, cannot be merged);  

Figure 4.  Decision tree construction 

 

Algorithm 3 : To perform height balance 

Perform _ balance _height (union, link _AB)  

1.Check the tree obtained is in balanced. 

2. if found then check the balance factor of the left/right sub 

tree is heavy on left /right  

3. if tree’s right sub tree is heavy ―left‖ then perform double 

―left‖ rotation else 

                                   Perform single ―left‖ rotation 

4. if tree’s left sub tree is heavy ―right‖ then perform double 

―right‖ rotation else 

                                   Perform single ―right‖ rotation 

5.Check for path preservations 

Figure 5.  Height-Balancing using AVL Tree Concept  

This algorithm also uses the concept of Height-Balancing 
in the tree using AVL trees depending on the priority checks 
for every node. This enhances the overall performance, as the 
final decision tree constructed is efficient enough to derive the 
classification rules effectively.  

Right-Right case and Right-Left case: when the balance 
factor of R is found as -2 , then the ―right‖ sub tree is heavier 
than the left sub tree of the given node and it needs to be 
balanced by checking the balance factor, r of the right child. If 
r is less than zero then apply single left rotation with respect to 
R as root. If r is +1 then apply double left rotation (first 

    Student 

id 

 qualification      age 

UG/PG     1/>1 
 

Percentage 
secured 

  backlogs 

   </> =24   SSC/12
 
th 

/UG/PG 
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rotation will be right as r as root and second rotation is a left 
rotation as R as root)  

Left-Left case and Left-Right case: when the balance factor 
of R is found as +2 , then the ―left‖ sub tree is heavier than the 
right sub tree of the given node and it needs to be balanced by 
checking the balance factor, r of the left child. If r is greater 
than zero then apply ―single right‖ rotation with respect to R 
as root. If r is -1 then apply ―double right‖ rotation (first 
rotation will be left as r as root and second rotation is a right 
rotation as R as root). This approach is shown in Figure 6. 

 

Figure 6.  AVL Tree Right and Left single rotations  

The final Decision Tree is constructed by using the above 
Algorithm 3, Balance Height. From the figure 7, it is clear that 
tree is well constructed and also balanced at every node. 

As mentioned in the algorithm, the path to different levels 
are updated and preserved accordingly. In this way improved 
scalability and efficiency of the data classification with 
Decision Tree enhancement. 

   

 

Figure 7.  Final decision tree with AVL tree concept  

VI. Extensions and Conclusions  
 

This paper proposes a approach for classification using 
Decision Tree Induction and it clearly shows how the 
algorithm generalizes the concept hierarchies from the training 
data by attribute-oriented induction (AOI). By generalization 
of the training data, it minimizes the requirement of the 
training data and makes the decision tree result meaningful 
using the AVL trees concept. The proposed algorithm 
provides a general framework that can be used with any 
existing Decision Tree Construction algorithms. In an effort to 

identify and rectify the restriction that limits the efficiency and 
scalability of other algorithms, we have proposed an efficient 
yet simple solution which will overcome them. Our future 
work involves further refinement in different applications of 
the proposed algorithm.  
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