
UACEE International Journal of Computer Science and its Applications

24

DEVELOPING WEB APPLICATION USING WEB MASH UP

TECHNOLOGY
Mr. Nitin Khankar

 nitinkhankar@gmail.com

UG Scholar, IT Dept, Bharati Vidyapeeth College of Engg, Navi Mumbai, India.

Abstract:

This paper reviews a web mash up is a web

application that takes information from one or more

sources and presents it in a new way or with a unique

layout. The term mash-up originated in the music

industry. It is sometimes spelled mashup .A new

breed of Web-based data integration applications is

sprouting up all across the Internet. Colloquially

termed mashups, their popularity stems from the

emphasis on interactive user participation and the

monster-of-Frankenstein-like manner in which they

aggregate and stitch together third-party data. The

sprouting metaphor is a reasonable one; a mashup

Web site is characterized by the way in which it

spreads roots across the Web, drawing upon content

and functionality retrieved from data sources that lay

outside of its organizational boundaries. This help to

get information of any trends rapidly.

Keywords: mapping, video-photo, search and

shopping mashups, different challenges.

I. INTRUDUCTION:

This vague data-integration definition of a mashup

certainly isn't a rigorous one. A good insight as to

what makes a mashup is to look at the etymology of

the term: it was borrowed from the pop music scene,

where a mashup is a new song that is mixed from the

vocal and instrumental tracks from two different

source songs (usually belonging to different genres).

Like these "bastard pop" songs, a mashup is an

unusual or innovative composition of content (often

from unrelated data sources), made for human (rather

than computerized) consumption.

So, what might a mashup look like? The

ChicagoCrime.org Web site is a great intuitive

example of what's called a mapping mashup. One of

the first mashups to gain widespread popularity in the

press, the Web site mashes crime data from the

Chicago Police Department's online database with

cartography from Google Maps. Users can interact

with the mashup site, such as instructing it to

graphically display a map containing pushpins that

reveal the details of all recent burglary crimes in

South Chicago. The concept and the presentation are

simple, and the composition of crime and map data is

visually powerful.

II. MAPPING MASHUPS:

In this age of information technology, humans are

collecting a prodigious amount of data about things

and activities, both of which are wont to be annotated

with locations. All of these diverse data sets that

contain location data are just screaming to be

presented graphically using maps. One of the big

catalysts for the advent of mashups was Google's

introduction of its Google Maps API. This opened the

floodgates, allowing Web developers (plus hobbyists,

tinkerers, and others) to mash all sorts of data

(everything from nuclear disasters to Boston's

CowParade cows) onto maps. Not to be left out, APIs

from Microsoft (Virtual Earth), Yahoo (Yahoo

Maps), and AOL (MapQuest) shortly followed.

III.VIDEO AND PHOTO MASHUPS:

The emergence of photo hosting and social

networking sites like Flickr with APIs that expose

photo sharing has led to a variety of interesting

mashups. Because these content providers have

metadata associated with the images they host (such

as who took the picture, what it is a picture of, where

and when it was taken, and more), mashup designers

can mash photos with other information that can be

[ISSN 2250 - 3765]

mailto:nitinkhankar@gmail.com

UACEE International Journal of Computer Science and its Applications

25

associated with the metadata. For example, a mashup

might analyze song or poetry lyrics and create a

mosaic or collage of relevant photos, or display social

networking graphs based upon common photo

metadata (subject, timestamp, and other metadata.).

Yet another example might take as input a Web site

(such as a news site like CNN) and render the text in

photos by matching tagged photos to words from the

news.

IV.SEARCH AND SHOPING MASHUPS:

Search and shopping mashups have existed long

before the term mashup was coined. Before the days

of Web APIs, comparative shopping tools such as

BizRate, PriceGrabber, MySimon, and Google's

Froogle used combinations of business-to-business

(b2b) technologies or screen-scraping to aggregate

comparative price data. To facilitate mashups and

other interesting Web applications, consumer

marketplaces such as eBay and Amazon have

released APIs for programmatically accessing their

content.

V.ARCHITECTURE:

A mash up application is architecturally comprised of

three different participants that are logically and

physically disjoint (they are likely separated by both

network and organizational boundaries): API/content

providers, the mashup site, and the client's Web

browser.

Fig1. mash up architecture

 The API/content providers. These are the

(sometimes unwitting) providers of the

content being mashed. In the

ChicagoCrime.org mashup example, the

providers are Google and the Chicago Police

Department. To facilitate data retrieval,

providers often expose their content through

Web-protocols such as REST, Web

Services, and RSS/Atom (described below).

However, many interesting potential data-

sources do not (yet) conveniently expose

APIs. Mashups that extract content from

sites like Wikipedia, TV Guide, and

virtually all government and public domain

Web sites do so by a technique known as

screen scraping. In this context, screen

scraping denotes the process by which a tool

attempts to extract information from the

content provider by attempting to parse the

provider's Web pages, which were originally

intended for human consumption.

 The mashup site. This is where the mashup

is hosted. Interestingly enough, just because

this is where the mashup logic resides, it is

not necessarily where it is executed. On one

hand, mashups can be implemented

similarly to traditional Web applications

using server-side dynamic content

generation technologies like Java servlets,

CGI, PHP or ASP.

Alternatively, mashed content can be

generated directly within the client's browser

through client-side scripting (that is,

JavaScript) or applets. This client-side logic

is often the combination of code directly

embedded in the mashup's Web pages as

well as scripting API libraries or applets

(furnished by the content providers)

referenced by these Web pages. Mashups

using this approach can be termed rich

internet applications (RIAs), meaning that

they are very oriented towards the

interactive user-experience. (Rich internet

applications are one hallmark of what's now

being termed "Web 2.0", the next generation

of services available on the World Wide

Web.) The benefits of client-side mashing

include less overhead on behalf of the

mashup server (data can be retrieved directly

Mash up client [web interface]

Mash up Logic Components

Mash up Data Sources & Services

[ISSN 2250 - 3765]

UACEE International Journal of Computer Science and its Applications

26

from the content provider) and a more

seamless user-experience (pages can request

updates for portions of their content without

having to refresh the entire page). The

Google Maps API is intended for access

through browser-side JavaScript, and is an

example of client-side technology.

Often mashups use a combination of both

server and client-side logic to achieve their

data aggregation. Many mashup applications

use data that is supplied directly to them by

their user base, making (at least) one of the

data sets local. Additionally, performing

complex queries on multiple-sourced data

(such as "Show me the average purchase

price for real estate bought by actors who

have co-starred in movies with Kevin

Bacon") requires computation that would be

infeasible to perform within the client's Web

browser.

 The client's Web browser. This is where the

application is rendered graphically and

where user interaction takes place. As

described above, mashups often use client-

side logic to assemble and compose the

mashed content.

VI.SCREENING SCRAPING:

As mentioned earlier, lack of APIs from content

providers often force mashup developers to resort to

screen scraping in order to retrieve the information

they seek to mash. Scraping is the process of using

software tools to parse and analyze content that was

originally written for human consumption in order to

extract semantic data structures representative of that

information that can be used and manipulated

programmatically. A handful of mashups use screen

scraping technology for data acquisition, especially

when pulling data from the public sectors. For

example, real-estate mapping mashups can mash for-

sale or rental listings with maps from a cartography

provider with scraped "comp" data obtained from the

county records office. Another mashup project that

scrapes data is XMLTV, a collection of tools that

aggregates TV listings from all over the world.

Screen scraping is often considered an inelegant

solution, and for good reasons. It has two primary

inherent drawbacks. The first is that, unlike APIs

with interfaces, scraping has no specific

programmatic contract between content-provider and

content-consumer. Scrapers must design their tools

around a model of the source content and hope that

the provider consistently adheres to this model of

presentation. Web sites have a tendency to overhaul

their look-and-feel periodically to remain fresh and

stylish, which imparts severe maintenance headaches

on behalf of the scrapers because their tools are likely

to fail.

The second issue is the lack of sophisticated, re-

usable screen-scraping toolkit software, colloquially

known as scrAPIs. The dearth of such APIs and

toolkits is largely due to the extremely application-

specific needs of each individual scraping tool. This

leads to large development overheads as designers

are forced to reverse-engineer content, develop data

models, parse, and aggregate raw data from the

provider's site.

VII.TECHNICAL CHALLENGES:

Like any other data integration domain, mashup

development is replete with technical challenges that

need to be addressed, especially as mashup

applications become more feature- and functionality-

rich. This section touches on a handful of these

challenges, some of which you can address and

mitigate, while others are open issues.

Data Integration Challenges: Semantic Meaning and

Data Quality

Qualitative surveys suggest that the number one

enterprise IT concern today is data integration within

the enterprise virtual organization. (In this context, I

use the term virtual organization to mean a

composition of federated business units, each

contained within its own administrative domain.)

Like many enterprise IT managers who find

themselves up to the task of integrating legacy data

sources (for example, to create corporate dashboards

that reflect current business conditions), mashup

developers are faced with the analogous challenges of

[ISSN 2250 - 3765]

UACEE International Journal of Computer Science and its Applications

27

deriving shared semantic meaning between

heterogeneous data sets. Therefore, to get an idea for

what mashup developers have in store,you need look

no further than the storied integration challenges

faced by enterprise IT.

For example, translation systems between data

models must be designed. When converting data into

common forms, reasonable assumptions often have to

be made when the mapping is not a complete one (for

example, one data source might have a model in

which an address-type contains a country-field,

whereas another does not). Already challenging, this

is exacerbated by the fact that the mashup developers

might not be domain experts on the source data

models because the models are third-party to them,

and these reasonable assumptions might not be

intuitive or clear.

In addition to missing data or incomplete mappings,

the mashup designer might discover that the data they

wish to integrate is not suitable for machine

automation; that it needs cleansing. For example, law

enforcement arrest records might be entered

inconsistently, using common abbreviations for

names (such as "mkt sqr" in one record and "Market

Square" in another), making automated reasoning

about equality difficult, even with good heuristics.

Semantic modeling technologies, such as RDF, can

help ease the problem of automatic reasoning

between different data sets, provided that it is built-in

to the data-store. Legacy data sources are likely to

require much human effort in terms of analysis and

data cleansing before they can be availed to semantic

modeling technologies.

Mashup developers might also have to contend with

several issues that IT integration managers might not,

one of which is data pollution. As part of their

application design, many mashups solicit public user

input. As evidenced in the wiki application domain,

this is a double-edged blade: it can be quite powerful

because it enables open contribution and best-of-

breed data evolution, yet it can be subject to

inconsistent, incorrect, or intentionally misleading

data entry. The latter can cast doubts on data

trustworthiness, which can ultimately compromise

the value provided by the mashup.

Another host of integration issues facing mashup

developers arise when screen scraping techniques

must be used for data acquisition. As discussed in the

previous section, deriving parsing and acquisition

tools and data models requires significant reverse-

engineering effort. Even in the best case where these

tools and models can be created, all it takes is a re-

factoring of how the source site presents its content

(or mothballing and abandonment) to break the

integration process, and cause mashup application

failure.

VIII.COMPONENT CHALLENGES:

The Ajax model of Web development can provide a

much richer and more seamless user experience than

the traditional full-page-refresh, but it poses some

difficulties as well. At its fundamentals, Ajax entails

using the browser's client-side scripting capabilities

in conjunction with its DOM to achieve a method of

content delivery that was not entirely envisioned by

the browser's designers. (Perhaps this hack-like

nature of Ajax lends to its appeal.) However, this

subjects Ajax-based applications to the same browser

compatibility issues that have plagued Web designers

ever since Microsoft created Internet Explorer. For

example, Ajax engines make use of an

XMLHttpRequst object to exchange data

asynchronously with remote servers. In Internet

Explorer 6, this object is implemented with ActiveX

rather than native JavaScript, which requires that

ActiveX be enabled.

A more fundamental requirement is that Ajax

requires that JavaScript be enabled within the user's

browser. This might be a reasonable assumption for

the majority of the population, but there are certainly

users who use browsers or automated tools that either

do not support JavaScript or do not have it enabled.

One such set of tools are the robots, spiders, and Web

crawlers that aggregate information for Internet and

intranet search engines. Without graceful

degradation, Ajax-based mashup applications might

find themselves missing out on both a minority user

base as well as search engine visibility.

The use of JavaScript to asynchronously update

content within the page can also create user interface

[ISSN 2250 - 3765]

UACEE International Journal of Computer Science and its Applications

28

issues. Because content is no longer necessarily

linked to the URL in the browser's address bar, users

might not experience the functionality that they

normally expect when they use the browser's BACK

button, or the BOOKMARK feature. And, although

Ajax can reduce latency by requesting incremental

content updates, poor designs can actually hinder the

user experience, such as when the granularity of

update is small enough that the quantity and overhead

of updates saturate the available resources. Also, take

care to support the user (for example, with visual

feedback such as progress bars) while the interface

loads or content is updated.

As with any distributed, cross-domain application,

mashup developers and content providers alike will

also need to address security concerns. The notion of

identity can prove to be a sticky subject, as the

traditional Web is primarily built for anonymous

access. Single-signon is a desirable feature, but there

are a multitude of competing technologies (ranging

from Microsoft Passport to the Liberty Alliance),

thus creating disjointed identity namespaces that you

must integrate as well. Content providers are likely to

employ authentication and authorization schemes

(which require the notion of secure identity or

securely identifiable attributes) in their APIs to

enforce business models that involve paid

subscriptions or sensitive data. Sensitive data is also

likely to require confidentiality (that is, encryption),

and you must take care when you mash it with other

sources to not put it at risk. Identity will also be

crucial for auditing and regulatory compliance.

Additionally, with data integration happening both on

the server and client-side, identity and credential

delegation from the user to the mashup service might

become a requirement.

IX.SOCIAL CHALLENGES:

In addition to the technical challenges described in

the previous section, social issues have (or will)

surface as mashups become more popular.

One of the biggest social issues facing mashup

developers is the tradeoff between the protection of

intellectual property and consumer privacy versus

fair-use and the free flow of information. Unwitting

content providers (targets of screen scraping), and

even content providers who expose APIs to facilitate

data retrieval might determine that their content is

being used in a manner that they do not approve of.

For a good review of Web aggregation and

regulations, see Resources.

The mashup Web application genre is still in its

infancy, with hobbyist developers who produce many

mashups in their spare time. These developers might

not be cognizant of (or concerned with) issues such

as security. Additionally, content providers are only

beginning to see the value in providing APIs for

machine-based content access, and many do not

consider them a core business focus. This

combination can yield poor software quality, as

priorities such as testing and quality assurance take

the backseat to proof-of-concept and innovation. The

community as a whole will have to work together to

assemble open standards and reusable toolkits in

order to facilitate mature software development

processes.

Before mashups can make the transition from cool

toys to sophisticated applications, much work will

have to go into distilling robust standards, protocols,

models, and toolkits. For this to happen, major

software development industry leaders, content

providers, and entrepreneurs will have to find value

in mashups, which means viable business models.

API providers will need to determine whether or not

to charge for their content, and if so, how (for

example, by subscription or by per-use). Perhaps they

will provide varying levels of quality-of-service.

Some marketplace providers, such as eBay or

Amazon, might find that the free use of their APIs

increases product movement. Mashup developers

might look for an ad-based revenue model, or

perhaps build interesting mashup applications with

the goal of being acquired.

[ISSN 2250 - 3765]

file:///D:/ECOM2010/ECOM%20NOTES/CH3/web%20mashup/x-mashups.html%23resources

UACEE International Journal of Computer Science and its Applications

29

CONCLUSION:

Mashups are certainly an exciting new genre of Web

applications. The combination of data modeling

technologies stemming from the Semantic Web

domain and the maturation of loosely-coupled,

service-oriented, platform-agnostic communication

protocols is finally providing the infrastructure

needed to start developing applications that can

leverage and integrate the massive amount of

information that is available on the Web. As mashup

applications gain higher visibility, it will be

interesting to see how the genre impacts social issues

such as fair-use and intellectual property as well as

other application domains that integrate data across

organizational boundaries, such as grid computing

and business-to-business workflow management.

For a deeper-dive into mashup development, stay

tuned for the launching of a new series of tutorials on

developer Works that will teach you how to construct

your own mashups. In fact, the series will even teach

you how to use Semantic Web technology and

ontologies to enable others to create their own

mashups.

REFERENCE:

I. www.google.com/mashuptechnogy.

II.

MASHUP: A NEW WAY OF PROVIDING

WEB MAPPING/GIS SERVICES S. Li *, J.

Gong Dept of Civil Engineering, Ryerson

University, 350 Victoria St., Toronto,

Ontario, Canada M5B 2K3 –(snli,

jgong)@ryerson.ca

[ISSN 2250 - 3765]

http://www.ibm.com/developerworks/views/xml/libraryview.jsp?search_by=The+ultimate+mashup+semantic+Web
http://www.google.com/mashuptechnogy

