
UACEE International journal of Computer Science and its Applications

1

 Vertical Perimeter Based Enhancement of Streaming

Application

P.Manikandan

Department of Computer Science

Pondicherry University

Puducherry, India

aravindkarthi10@gmail.com

R.Kathiresan

Department of computer science,

Kalasalingam University,

Madurai,India

kathirbykathir@gmail.com

Marie Stanislas Ashok

Head and System manager,

Computer centre,

Pondicherry University,

Puducherry, India

ashokms@yahoo.com

Abstract-The explosion of web and increase in processing power

meets a large number of short lived connections making

connection setup time equally important. With Fire Engine, the

networking stack went through one more transition where the

core pieces (i.e. socket layer, TCP, UPD, IP, and device driver)

used an IP Classifier and serialization queue to improve the

connection setup time, scalability, and packet processing cost.

The “Fire Engine” approach is to merge all protocol layers into

one STREAMs module which is fully multi threaded. Inside the

merged module, instead of using per data structure locks, use a

per CPU synchronization mechanism called “vertical

perimeter”. The “vertical perimeter” is implemented using a

serialization queue abstraction called “squeue”

Keywords- threading, scheduling, dispatching, STREAM,

Multicore, Fire Engine, Vertical Perimeter, CPU scheduling,

task queue, IP Multithreading.

I. INTRODUCTION

 In recent years, since the clock rate of single processor

cannot be increased without overheating, to increase

performance, manufacturers develop multicore systems

instead. In order to run the applications on multicore systems,

there are many parallel algorithms developed, e.g. parallel

H.264 applications. By exploiting parallelism, multicore

systems compute more effectively. Multiple threads and

processes are common useful approaches to speed up user a

task with one thread in some operating systems, e.g. Linux.

 In our observation, threads sometimes are not dispatched

reasonably on processors. We redefine these anomalies

formally from multiprocessing timing anomalies and focus

on thread manipulation on multicore systems. For example,

even if some cores are idle, the operating system does not

dispatch any thread to the idle ones. Furthermore, even if

users find out this situation, they still cannot directly dispatch

these threads accordingly if the operation system does not

provide related system calls. Although there are some

existing mechanisms, like procfs, to access system

information and system calls, like sched_setaffinity (), to

dispatch threads to certain processors, dispatch wraps these

into a complete API. It not only provides generic interface for

future extension and high portability without kernel

modification, but also performs much better than procfs.

A. Fire Engine

The Fire Engine [10] networking stack for the Solaris

Operating System (OS) is currently under development by

Sun. Enhanced network performance and a flexible

architecture to meet future customer networking needs are

twin goals of Fire Engine development. Addressing existing

requirements, including increased performance and

scalability, Disaster Recovery (DR), Secure Internet Protocol

(IPSec), and IP Multiprocessing (IPMP), as well as future

requirements—such as 10-gigabits per second (Gbps)

networking, 100-Gbps networking, and TCP/IP Offload

Engine (TOE)—are given equal priority.

 Implemented in three phases, Fire Engine’s development

stages are structured to provide increased flexibility and a

significant performance boost to overall network throughput.

Phase 1 has already been completed and these goals have

been realized in services using TCP/IP. Web-based

benchmarks show a 30- to 45-percent improvement on both

SPARC® and Intel x86 architectures, while bulk data

transfer benchmarks show improvements in the range of 20

to 40 percent. Phases 2 and 3 should deliver similar overall

performance improvements. With increased flexibility and

performance boosts of this magnitude, FireEngine is well on

its way to reinforcing Sun’s Solaris OS as the commercial

standard for networking infrastructure.

B. Performance Barriers

 The existing TCP/IP stack uses STREAMS perimeters

and kernel adaptive mutex for multithreading. As the current

STREAMS perimeter provides per module, per protocol

stack layer, or horizontal perimeters. This can, and often

does, lead to a packet being processed on more than one CPU

and by more than one thread, leading to excessive context

switching and poor CPU data locality.

C. Network Performance

 FireEngine introduces a new highly scalable, packet

classification architecture called Firehose. Each incoming

packet is classified early on, then proceeds through an

[ISSN 2250 - 3765]

UACEE International journal of Computer Science and its Applications

2

optimized list of functions—the Event List —that makes it

easy to add protocols without impacting the network stack’s

complexity, performance, or scalability. FireEngine

concentrates on improving the performance of key server

workloads that have a significant networking component.

The impact of network performance on these workloads, as

well as benchmarks that describe overall workload

performance

D. Performance metrics

 Applications often use networking in two distinct ways:

To perform transactions over the network, or to stream data

over the network. Transactions are short-lived connections

transferring a small amount of application data, while

streaming data is a transfer of large amounts of data during

long-lived connections. In the transaction case, performance

is determined by a combination of the time it takes to get the

first byte (first-byte latency), connection set up/tear down,

plus network throughput (bits per second or bps). In the

streaming case, performance is dominated by overall network

throughput. These parameters impact performance in various

ways, depending on the amount of data transferred. For

instance, when transferring one byte of data, only first-byte

latency and connection set up/tear down count. When

transferring very large amounts of data, only network

throughput is relevant. Finally, there is the ability to sustain

performance as the number of active simultaneous

connections increases. This is often a requirement for Web

servers. A networking stack must take into account the host

system’s hardware characteristics. For low-end systems, it is

important to make efficient use of the available hardware

resources, such as memory and CPU. For higher-end

systems, the stack must take into account the high variability

in memory access time, as well as system resources that

offload some functions to specialized hardware.

Fire Engine focuses on these network performance metrics

[10]:

• Network throughput

• Connection set up/tear down

• First-byte latency

• Connection and CPU scalability

• Efficient resource usage.

E. Vertical Perimeters

 The Solaris 10 FireEngine project introduces the

abstraction of a vertical perimeter, which is composed of a

new kernel data structure, the squeue_t (serialization queue

type), and a worker thread owned by the squeue_t , which is

bound to a CPU. Vertical perimeters or squeues by

themselves provide packet serialization and mutual exclusion

for the data structures. FireEngine uses a per-CPU perimeter,

which is a single instance per connection. For each CPU

instance the packet is queued for processing, and a pointer to

the connection structure is stored inside the packet. The

thread entering squeue may either process the packet

immediately, or queue it for later processing. The choice

depends on the squeue’s entry point and its state. Immediate

processing is possible only when no other thread has entered

the same squeue. A connection instance is assigned to a

single squeue_t so it is processed only within the vertical

perimeter. As a squeue_t is processed by a single thread at a

time, all data structures used to process a given connection

from within the perimeter can be accessed without additional

locking. This improves both CPU and thread context data

locality of access for the connection metadata, packet

metadata, and packet payload data, improving overall

network performance.

This approach also allows:

• The removal of per-device driver worker thread schemes,

which are often problematic in solving system-wide resource

issues.

• Additional strategic algorithms to be implemented to best

handle a given network interface, based on network interface

throughput and system throughput (such as fanning out per-

connection packet processing to a group (of CPUs).

II. RELATED WORKS

 Many techniques have been developed to exploit

parallelism. OpenMP [5] is a tool where looped tasks can be

partitioned into multiple independent tasks automatically.

Affine partition [6], [7], is another method that can find the

optimal partition, which maximizes the parallelism with the

minimum synchronization. However, few works have been

done to address on how to allocate resources to threads on

multicore systems.

 André C. Neto, Filippo Sartori, [1] proposed MARTe is a

framework built over a multiplatform library that allows the

execution of the same code in different operating systems.

Drawback is latency. François Trahay, Élisabeth Brunet

Alexander Denis [2], the author present a thread safety while

processing by locking mechanism. Drawback is of Deadlock.

Fengguang Song, Shirley Moore [3], This paper proposes an

analytical model to estimate the cost of running an affinity-

based thread schedule on multicore systems. Tang-Hsun Tu,

Chih-Wen Hsueh [4], Decomposing of thread by User

Dispatching Mechanism (UDispatch) that provides

controllability in user space to improve application

performance. Ana Sonia Leon [8], proposed Chip Multi-

Threading (CMT) architecture which maximizes overall

throughput performance for commercial workloads.

Drawback is low performance. Sunay Tripathi, Nicolas

Droux, Thirumalai Srinivasan, presented a paper that is a new

architecture which addresses Quality of Service (QoS) by

creating unique flows for applications and Services.

 III.FIRE ENGINE ARCHITECTURE

 The Solaris FireEngine networking performance

improvement project adheres to these design principles [10]:

[ISSN 2250 - 3765]

UACEE International journal of Computer Science and its Applications

3

• Data locality: Ensures that a connection is always

processed by the same CPU whenever possible

• CPU modelling: Efficient use of available CPUs and

interrupt/worker thread model. Allows use of multiple CPUs

for protocol processing

• Code path locality: Improves performance and efficiency of

TCP/IP interactions

• TCP/IP interaction: Switches from a message passing-

based interface to a function call-based interface.

 Because of the large number and dependent nature of

changes required to achieve FireEngine goals, the

development program is split into three phases:

 Solaris 10 Fire Engine phase 1 [10]: Fundamental

infrastructure implemented and a large performance boost

realized. Application and STREAMS module developers see

no changes other than better performance and scalability.

Solaris 10U and SX Fire Engine Phase 2 [10]: Feature

scalability, offloading, and the new Event List framework

implemented.

1. Solaris 10 Fire Engine phase 1 architecture

A. IP Classifier-Based Fan Out

 When the Solaris IP receives a packet from a NIC, it

classifies the packet and determines the connection structure

and vertical perimeter instance that will process that packet.

New incoming connections are assigned to the vertical

perimeter instance attached to the interrupted CPU. Or, to

avoid saturating an individual CPU, a fan-out across all

CPUs is performed. A NIC always sends a packet to IP in

interrupt context, so IP can optimize between interrupt and

noninterrupt processing, avoiding CPU saturation by a fast

NIC.

There are multiple advantages with this approach:

• The NIC does minimal work, and complexity is hidden

from independent NIC manufacturers.

• IP can decide whether the packet needs to be processed on

the interrupted CPU or via a fan out across all CPUs.

Processing a packet on the interrupted CPU in interrupt

context saves the context switch, compared to queuing

the packet and letting a worker thread process it.

• IP can also control the amount of work done by the

interrupt without incurring extra cost. On low loads,

processing is done in interrupt context. With higher loads, IP

dynamically changes between interrupt and

polling while employing interrupt and worker threads for the

most efficient processing. In the case of a single

high bandwidth NIC (such as 10Gbps), IP also fans out the

connection to multiple CPUs.

• If multiple CPUs are applied, the connection is bound to

one of the available CPUs servicing the NIC. Worker threads,

their management, and special fan-out schemes can be

coupled to the vertical perimeter with little code complexity.

Since these functions reside in IP, this architecture benefits

all NICs.

• The DR issues arising from binding a worker thread to a

CPU can be effectively handled in IP.

 The Solaris 10 FireEngine project introduces the

abstraction of a vertical perimeter, which is composed of a

new kernel data structure, the squeue_t (serialization queue

type), and a worker thread owned by the squeue_t, which is

bound to a CPU. Vertical perimeters or squeues by

themselves provide packet serialization and mutual exclusion

for the data structures. FireEngine uses a per-CPU perimeter,

which is a single instance per connection. For each CPU

instance the packet is queued for processing, and a pointer to

the connection structure is stored inside the packet.

Figure 2: Packets flowing in TCP through vertical perimeter

tcp_input - All inbound data packets and control messages

tcp_output - All outbound data packets and control messages

tcp_close_output - On user close

tcp_timewait_output - timewait expiry

tcp_rsrv_input - Flow control relief on read side.

tcp_timer - All tcp timers

IV. ANALYSIS

1. Scheduling algorithm

Good cluster schedulers attempt to minimize job wait time

while maximizing cluster utilization. The maximization of

utilization and minimization of wait time are subject to the

policy set by the scheduler administrator.

Types of scheduling [11]:

• Long-term scheduling : the decision to add to pool

of processes to be executed

[ISSN 2250 - 3765]

UACEE International journal of Computer Science and its Applications

4

• Mid-term scheduling : the decision to add to the

number of processes that are partially or fully in

memory

• Short-term scheduling : decision as to which

available process will be executed

• I/O scheduling : decision as to which process’s

pending request shall be handled by an available

I/O device

Figure 3 : Scheduling and process state transition

A. Fair share scheduling

The FS scheduler has two levels of scheduling: process

and user. Process level scheduling same as in standard UNIX

(priority and nice values act as bias to scheduler as it

repositions processes in the run-queue). User level scheduler

relationship can be seen in the following (simplified) pseudo-

code. Whereas process-level scheduling still occurs 100

times a second, user-level scheduling adjustments (usage

parameter) occur once every 4 seconds. Also, once second,

process-level priority adjustments that were made in the

previous second begin to be ―forgotten‖. This is to avoid

starving a process. FSS is all about making scheduling

decisions based on process sets rather than on basis of

individual processes.

 Figure 4: Scheduling process

fs_interval (): Duration of each fairshare window.

fs_depth (): Number of fairshare windows factored into the

current fairshare utilization calculation.

fs_decay (): Decay factor applied to weighting the

contribution of each fairshare window in the past.

V.RESULTS

Comparison of Single Queue and Multiple Queues:

Here we are examine that execution time is

less,using of multiple queues than single queue.comparison

regarding to the paket count and length of bytes. Execution

time in nanosecond but easy reference we converting into

seconds.

Length of bytes 300:

300 B ytes

0

5

10

15

P a c ket C ount

E
x

e
c

u
ti

o
n

 T
im

e
(S

e
c

)

S ingle q

Multi q

S ingle q 0.4 0.9 5 10

Multi q 0.15 0.34 2 4

10 100 500 1000

Length of bytes 600:

600 B ytes

0

5

10

P a c ke t C ount

E
x

e
c

u
ti

o
n

 T
im

e
(S

e
c

)

S ingle q

Multi q

S ingle q 0.3 0.9 5 9

Multi q 0.1 0.4 2 3

10 100 500 1000

VI.CONCLUSION

In this paper, we presented the vertical perimeter for

enhancing the streaming application. In multicore

environment, using multiple threads is a common useful

approach to improve application performance. Nevertheless,

even in many simple applications, the performance might

[ISSN 2250 - 3765]

UACEE International journal of Computer Science and its Applications

5

degrade when the number of threads increases. However, in

our observation, the more significant effect is the dispatching

of threads. In solaris 10 the fire engine has the concept of

vertical perimeter. By using the vertical perimeter we can

improve the streaming application and we mainly

concentrated on the queue management, assigning the core,

thread allocating and time profiling. For the allocation of

process we need the scheduling algorithm. Here we used fair

share scheduling (FSS). FSS will make scheduling process

easier and efficient. So are going to analysis and implement

the FSS in this paper.

VII. REFERENCES

[1] André C. Neto, Filippo Sartori, ―MARTe: A

Multiplatform Real-Time Framework‖, IEEE

transactions on nuclear science, vol. 57, no. 2, april

2010.

[2] François Trahay, Élisabeth Brunet, ―An analysis of

the impact of multi-threading on communication

performance‖, IEEE transactions 2009.

[3] Fengguang Song , Shirley Moore, ―Analytical

Modeling and Optimization for Affinity Based

Thread Scheduling on Multicore Systems‖, IEEE

transactions 2009.

[4] Tang-hsun Tu, Chih-wen hsueh, Rong-Guey Chang,

―A portable and efficient User Dispatching

Mechanism for multicore system‖, IEEE

International conference on Embedded and real-

time computing systems and applications, pp.427-

436,2009

[5] L. Dagum and R. Menon, ―OpenMP: An Industry-

Standard API for Shared-Memory Programming,‖

IEEE Computational Science & Engineering, vol. 5,

no. 1, pp. 46–55, Jan. 1998.

[6] W. Lim, G. I. Cheong, and M. S. Lam, ―An Affine

Partitioning Algorithm to Maximize Parallelism and

Minimize Communication,‖ Proceedings of the 13th

international conference on Supercomputing, pp.

228–237, 1999.

[7] W. Lim and M. S. Lam, ―Maximizing Parallelism

and Minimizing Synchronization with affine

Transforms,‖ Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages, pp. 201–214, 1997.

[8] Ana Sonia Leon, Senior Member, ” A Power-

Efficient High-Throughput 32-Thread SPARC

Processor”, IEEE journal of solid-state circuits, vol.

42, no. 1, jan. 2007.

[9] W.-Y. Cai and H.-B. Yang. Cross-layer QoS

optimization design for wireless sensor networks. In

Wireless, Mobile and Sensor Networks, 2007.

[11]Tong Li, Alvin R. Lebeck, ―Spin Detection

Hardware for Improved Management of

Multithreaded Systems‖, IEEE transactions on

parallel and distributed systems, vol. 17, no. 6, June

2006.

[12]Sunay Tripathi, ―FireEngine - A New Networking

Architecture for the Solaris Operating System‖

www.sun.com/bigadmin/content/networkperf/FireE

ngine_WP.pdf, Nov. 2004.

[13]Prof. Navneet Goyal, Department of Computer

Science & Information System, BITS,

Pilani,‖operating system‖.

[10]Simon Hauger, A Novel Architecture for a High-

Performance Network Processing Unit: Flexibility at

Multiple Levels of Abstraction, 978-1-4244- 5174-

6/09/$26.00 ©2009 IEEE.

[ISSN 2250 - 3765]

