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Abstract-The explosion of web and increase in processing power 

meets a large number of short lived connections making 

connection setup time equally important. With Fire Engine, the 

networking stack went through one more transition where the 

core pieces (i.e. socket layer, TCP, UPD, IP, and device driver) 

used an IP Classifier and serialization queue to improve the 

connection setup time, scalability, and packet processing cost. 

The “Fire Engine” approach is to merge all protocol layers into 

one STREAMs module which is fully multi threaded. Inside the 

merged module, instead of using per data structure locks, use a 

per CPU synchronization mechanism called “vertical 

perimeter”. The “vertical perimeter” is implemented using a 

serialization queue abstraction called “squeue” 
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I. INTRODUCTION 

 
      In recent years, since the clock rate of single processor 

cannot be increased without overheating, to increase 

performance, manufacturers develop multicore systems 

instead. In order to run the applications on multicore systems, 

there are many parallel algorithms developed, e.g. parallel 

H.264 applications. By exploiting parallelism, multicore 

systems compute more effectively. Multiple threads and 

processes are common useful approaches to speed up user a 

task with one thread in some operating systems, e.g. Linux. 

      In our observation, threads sometimes are not dispatched 

reasonably on processors. We redefine these anomalies 

formally from multiprocessing timing anomalies and focus 

on thread manipulation on multicore systems. For example, 

even if some cores are idle, the operating system does not 

dispatch any thread to the idle ones. Furthermore, even if 

users find out this situation, they still cannot directly dispatch 

these threads accordingly if the operation system does not 

provide related system calls. Although there are some 

existing mechanisms, like procfs, to access system 

information and system calls, like sched_setaffinity (), to 

dispatch threads to certain processors, dispatch wraps these 

into a complete API. It not only provides generic interface for 

future extension and high portability without kernel 

modification, but also performs much better than procfs. 

A. Fire Engine   

     

The Fire Engine [10] networking stack for the Solaris 

Operating System (OS) is currently under development by 

Sun. Enhanced network performance and a flexible 

architecture to meet future customer networking needs are 

twin goals of Fire Engine development. Addressing existing 

requirements, including increased performance and 

scalability, Disaster Recovery (DR), Secure Internet Protocol 

(IPSec), and IP Multiprocessing (IPMP), as well as future 

requirements—such as 10-gigabits per second (Gbps) 

networking, 100-Gbps networking, and TCP/IP Offload 

Engine (TOE)—are given equal priority. 

      Implemented in three phases, Fire Engine’s development 

stages are structured to provide increased flexibility and a 

significant performance boost to overall network throughput. 

Phase 1 has already been completed and these goals have 

been realized in services using TCP/IP. Web-based 

benchmarks show a 30- to 45-percent improvement on both 

SPARC® and Intel x86 architectures, while bulk data 

transfer benchmarks show improvements in the range of 20 

to 40 percent. Phases 2 and 3 should deliver similar overall 

performance improvements. With increased flexibility and 

performance boosts of this magnitude, FireEngine is well on 

its way to reinforcing Sun’s Solaris OS as the commercial 

standard for networking infrastructure. 

 

B. Performance Barriers  

 

      The existing TCP/IP stack uses STREAMS perimeters 

and kernel adaptive mutex for multithreading. As the current  

STREAMS perimeter provides per module, per protocol 

stack layer, or horizontal perimeters. This can, and often 

does, lead to a packet being processed on more than one CPU 

and by more than one thread, leading to excessive context 

switching and poor CPU data locality. 

 

C. Network Performance 

 

      FireEngine introduces a new highly scalable, packet 

classification architecture called Firehose. Each incoming 

packet is classified early on, then proceeds through an 

[ISSN 2250 - 3765]



UACEE International journal of Computer Science and its Applications 

 

2 

 

optimized list of functions—the Event List —that makes it 

easy to add protocols without impacting the network stack’s 

complexity, performance, or scalability. FireEngine 

concentrates on improving the performance of key server 

workloads that have a significant networking component. 

The impact of network performance on these workloads, as 

well as benchmarks that describe overall workload 

performance 

 

D. Performance metrics 

 

      Applications often use networking in two distinct ways: 

To perform transactions over the network, or to stream data 

over the network. Transactions are short-lived connections 

transferring a small amount of application data, while 

streaming data is a transfer of large amounts of data during 

long-lived connections. In the transaction case, performance 

is determined by a combination of the time it takes to get the 

first byte (first-byte latency), connection set up/tear down, 

plus network throughput (bits per second or bps). In the 

streaming case, performance is dominated by overall network 

throughput. These parameters impact performance in various 

ways, depending on the amount of data transferred. For 

instance, when transferring one byte of data, only first-byte 

latency and connection set up/tear down count. When 

transferring very large amounts of data, only network 

throughput is relevant. Finally, there is the ability to sustain 

performance as the number of active simultaneous 

connections increases. This is often a requirement for Web 

servers. A networking stack must take into account the host 

system’s hardware characteristics. For low-end systems, it is 

important to make efficient use of the available hardware 

resources, such as memory and CPU. For higher-end 

systems, the stack must take into account the high variability 

in memory access time, as well as system resources that 

offload some functions to specialized hardware. 

 

Fire Engine focuses on these network performance metrics 

[10]: 

 

• Network throughput 

• Connection set up/tear down 

• First-byte latency 

• Connection and CPU scalability 

• Efficient resource usage. 

 

E. Vertical Perimeters 

 

      The Solaris 10 FireEngine project introduces the 

abstraction of a vertical perimeter, which is composed of a 

new kernel data structure, the squeue_t (serialization queue 

type), and a worker thread owned by the squeue_t , which is 

bound to a CPU. Vertical perimeters or squeues by 

themselves provide packet serialization and mutual exclusion 

for the data structures. FireEngine uses a per-CPU perimeter, 

which is a single instance per connection. For each CPU 

instance the packet is queued for processing, and a pointer to 

the connection structure is stored inside the packet. The 

thread entering squeue may either process the packet 

immediately, or queue it for later processing. The choice 

depends on the squeue’s entry point and its state. Immediate 

processing is possible only when no other thread has entered 

the same squeue. A connection instance is assigned to a 

single squeue_t so it is processed only within the vertical 

perimeter. As a squeue_t is processed by a single thread at a 

time, all data structures used to process a given connection 

from within the perimeter can be accessed without additional 

locking. This improves both CPU and thread context data 

locality of access for the connection metadata, packet 

metadata, and packet payload data, improving overall 

network performance. 

This approach also allows: 

• The removal of per-device driver worker thread schemes, 

which are often problematic in solving system-wide resource 

issues. 

• Additional strategic algorithms to be implemented to best 

handle a given network interface, based on network interface 

throughput and system throughput (such as fanning out per-

connection packet processing to a group (of CPUs). 

II. RELATED WORKS 

      Many techniques have been developed to exploit 

parallelism. OpenMP [5] is a tool where looped tasks can be 

partitioned into multiple independent tasks automatically. 

Affine partition [6], [7], is another method that can find the 

optimal partition, which maximizes the parallelism with the 

minimum synchronization. However, few works have been 

done to address on how to allocate resources to threads on 

multicore systems. 

      André C. Neto, Filippo Sartori, [1] proposed MARTe is a 

framework built over a multiplatform library that allows the 

execution of the same code in different operating systems. 

Drawback is latency. François Trahay, Élisabeth Brunet 

Alexander Denis [2], the author present a thread safety while 

processing by locking mechanism. Drawback is of Deadlock. 

Fengguang Song, Shirley Moore [3], This paper proposes an 

analytical model to estimate the cost of running an affinity-

based thread schedule on multicore systems. Tang-Hsun Tu, 

Chih-Wen Hsueh [4], Decomposing of thread by User 

Dispatching Mechanism (UDispatch) that provides 

controllability in user space to improve application 

performance. Ana Sonia Leon [8], proposed Chip Multi-

Threading (CMT) architecture which maximizes overall 

throughput performance for commercial workloads. 

Drawback is low performance. Sunay Tripathi, Nicolas 

Droux, Thirumalai Srinivasan, presented a paper that is a new 

architecture which addresses Quality of Service (QoS) by 

creating unique flows for applications and Services.  

 

                              III.FIRE ENGINE ARCHITECTURE 

 

      The Solaris FireEngine networking performance 

improvement project adheres to these design principles [10]: 
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• Data locality: Ensures that a connection is always 

processed by the same CPU whenever possible 

• CPU modelling: Efficient use of available CPUs and 

interrupt/worker thread model. Allows use of multiple CPUs 

for protocol processing 

• Code path locality: Improves performance and efficiency of 

TCP/IP interactions 

• TCP/IP interaction: Switches from a message passing-

based interface to a function call-based interface. 

 

      Because of the large number and dependent nature of 

changes required to achieve FireEngine goals, the 

development program is split into three phases: 

 

 Solaris 10 Fire Engine phase 1 [10]: Fundamental 

infrastructure implemented and a large performance boost 

realized. Application and STREAMS module developers see 

no changes other than better performance and scalability. 

 

Solaris 10U and SX Fire Engine  Phase 2 [10]:   Feature 

scalability, offloading, and the new Event List framework 

implemented. 

 

1. Solaris 10 Fire Engine phase 1 architecture 

 

A. IP Classifier-Based Fan Out 

      When the Solaris IP receives a packet from a NIC, it 

classifies the packet and determines the connection structure 

and vertical perimeter instance that will process that packet. 

New incoming connections are assigned to the vertical 

perimeter instance attached to the interrupted CPU. Or, to 

avoid saturating an individual CPU, a fan-out across all 

CPUs is performed. A NIC always sends a packet to IP in 

interrupt context, so IP can optimize between interrupt and 

noninterrupt processing, avoiding CPU saturation by a fast 

NIC. 

 

There are multiple advantages with this approach: 

 

• The NIC does minimal work, and complexity is hidden 

from independent NIC manufacturers. 

• IP can decide whether the packet needs to be processed on 

the interrupted CPU or via a fan out across all CPUs. 

Processing a packet on the interrupted CPU in interrupt 

context saves the context switch, compared to queuing 

the packet and letting a worker thread process it. 

• IP can also control the amount of work done by the 

interrupt without incurring extra cost. On low loads, 

processing is done in interrupt context. With higher loads, IP 

dynamically changes between interrupt and 

polling while employing interrupt and worker threads for the 

most efficient processing. In the case of a single 

high bandwidth NIC (such as 10Gbps), IP also fans out the 

connection to multiple CPUs. 

• If multiple CPUs are applied, the connection is bound to 

one of the available CPUs servicing the NIC. Worker threads, 

their management, and special fan-out schemes can be 

coupled to the vertical perimeter with little code complexity. 

Since these functions reside in IP, this architecture benefits 

all NICs. 

• The DR issues arising from binding a worker thread to a 

CPU can be effectively handled in IP. 

 

      The Solaris 10 FireEngine project introduces the 

abstraction of a vertical perimeter, which is composed of a 

new kernel data structure, the squeue_t (serialization queue 

type), and a worker thread owned by the squeue_t, which is 

bound to a CPU. Vertical perimeters or squeues by 

themselves provide packet serialization and mutual exclusion 

for the data structures. FireEngine uses a per-CPU perimeter, 

which is a single instance per connection. For each CPU 

instance the packet is queued for processing, and a pointer to 

the connection structure is stored inside the packet. 

 
Figure 2: Packets flowing in TCP through vertical perimeter 

 

tcp_input - All inbound data packets and control messages 

tcp_output - All outbound data packets and control messages 

tcp_close_output - On user close 

tcp_timewait_output - timewait expiry 

tcp_rsrv_input - Flow control relief on read side. 

tcp_timer - All tcp timers 

IV. ANALYSIS 

 
1.  Scheduling algorithm 

Good cluster schedulers attempt to minimize job wait time 

while maximizing cluster utilization. The maximization of 

utilization and minimization of wait time are subject to the 

policy set by the scheduler administrator. 

Types of scheduling [11]: 

• Long-term scheduling :  the decision to add to pool 

of  processes to be executed 
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• Mid-term scheduling : the decision to add to the 

number of processes that are partially or fully in 

memory 

• Short-term scheduling : decision as to which 

available process will be executed 

• I/O scheduling :  decision as to which process’s 

pending request  shall be handled by an available 

I/O device 

 

 
 

Figure 3 : Scheduling and process state transition 

 

A. Fair share scheduling 

 

The FS scheduler has two levels of scheduling: process 

and user. Process level scheduling same as in standard UNIX 

(priority and nice values act as bias to scheduler as it 

repositions processes in the run-queue). User level scheduler 

relationship can be seen in the following (simplified) pseudo-

code. Whereas process-level scheduling still occurs 100 

times a second, user-level scheduling adjustments (usage 

parameter) occur once every 4 seconds. Also, once second, 

process-level priority adjustments that were made in the 

previous second begin to be ―forgotten‖.  This is to avoid 

starving a process. FSS is all about making scheduling 

decisions based on  process sets rather than on basis of 

individual processes. 

 

 

           
                               

                   Figure 4: Scheduling process 

 

 

fs_interval ():  Duration of each fairshare window. 

fs_depth ():  Number of fairshare windows factored into the 

current fairshare utilization calculation. 

fs_decay (): Decay factor applied to weighting the 

contribution of each fairshare window in the past. 

 

V.RESULTS 

 
Comparison of Single Queue and Multiple Queues:    

 

Here we are examine that execution time is 

less,using of multiple queues than single queue.comparison  

regarding to the paket count and length of bytes. Execution 

time in nanosecond but easy reference we converting into 

seconds.  
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VI.CONCLUSION 

 
In this paper, we presented the vertical perimeter for 

enhancing the streaming application. In multicore 

environment, using multiple threads is a common useful 

approach to improve application performance. Nevertheless, 

even in many simple applications, the performance might 
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degrade when the number of threads increases. However, in 

our observation, the more significant effect is the dispatching 

of threads. In solaris 10 the fire engine has the concept of 

vertical perimeter. By using the vertical perimeter we can 

improve the streaming application and we mainly 

concentrated on the queue management, assigning the core, 

thread allocating and time profiling. For the allocation of 

process we need the scheduling algorithm. Here we used fair 

share scheduling (FSS). FSS will make scheduling process 

easier and efficient. So are going to analysis and implement 

the FSS in this paper. 
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