
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765] 

184 

 

Flash on a Set Top Box to Enhance Interactivity 

Vinod Kumar N 

Department of Computer Science 

and Engineering 

B.M.S. College of Engineering 

Bangalore-560 019, India 

vinod_k1001@yahoo.com 

 

Lakshmikantha H.A 
Department of Computer Science 

and Engineering 

B.M.S. College of Engineering 

Bangalore-560 019, India 

kanth.cbp@gmail.com 

 

 

G Varaprasad 
Department of Computer Science 

and Engineering  

B.M.S. College of Engineering 

Bangalore-560 019, India. 

varaprasad555555@yahoo.co.in 

 
Abstract—Before pay systems and digital television, all that 

consumers needed to watch television was a standard television 

set that they could buy anywhere. In the 1980s this simple model 

began to change. The advent of cable and satellite television 

required consumers to connect their TVs to an additional device 

like a set top box to receive the signals. This paper discusses 

about the usage of flash in the application layer of the set top box 

architecture. Adobe flash is bandwidth friendly vector animation 

originally designed to create animation for web. It is extended 

and incorporated into a set top box to enhance the interactivity 

by improving the look and feel of the user interface. The flash 

user interface is developed with object oriented script language 

called action script. 

Keywords—Settop box, adobe flash, user interface, called 

action script. 

I.  Introduction  
The transition to digital television has created a new 

dimension in the way people use television. Personalized and 
interactive services attract viewers into the television 
experience. Interactive TV is a broad term that includes any 
service which enhances the TV viewing experience [1]. 
Interactive TV ranges from an attractive user interface to 
adding a new functionality to the TV. Great content is no 
longer enough to keep platforms and network operators 
competitive.  Today, STB’s are marketed to a new generation 
of demanding, technology conscious consumers. These 
consumers are also sophisticated TV viewers, expecting more 
personalized services, detailed program guides and the content 
that interests them available on-demand. These consumers 
want more than a passive TV viewing experience. They want 
to be involved. They want to play along with game shows; 
experience sports as if they are in the stadium, make impulsive 
purchases of content or merchandise etc. When the above 
services are provided through a better user interface, the 
interactivity between the viewer and the TV will be increased 
further. Flash being a technology that dominated the web is 
incorporated into the set top box to build a better application 
layer.  

The paper is organized as follows. Section 2 describes 
about the Adobe flash lite player which is a lighter version of 
the flash player. The architecture of the flash set top box is 
discussed in Section 3. Section 4 gives an overview of the 
flash engine that supports the flash applications. Section 5 
explains some of the performance considerations for flash 

applications. Section 6 gives the results. Conclusions and 
future enhancements are given in section 7. 

II. FLASH LITE PLAYER 
Adobe flash lite player is a lighter version of the Adobe 

flash player. The Flash lite player is specifically intended for 
mobile phones and other electronic devices [2]. This player is 
further extended and incorporated into a STB. Flash lite is a 
development technology implemented at the client-side or user 
interface layer. It will operate on devices with a lower 
hardware specification.  It uses vector graphics to minimize 
file size and create files that save bandwidth and loading time. 
Flash is a common format for games, animations, and GUIs. 
Figure 1 shows the support that is extended by the Flash lite 
player.  Flash lite cannot be considered as an embedded 
operating system, it is a technology for developing 
applications that run on an embedded operating system. 

Flash Applications

Flash Run Time

Adobe Flash Lite Player

 
Figure 1.  Adobe flash lite player. 

III. SET TOP BOX FLASH 
ARCHITECTURE 

The proposed architecture of the STB is shown in figure 2. 
This architecture follows layered architecture [3] and 
discusses about the porting of flash applications on the set top 
box. The flash applications may be a flash electronic program 
guide or flash games. The flash engine will host the flash lite 
player and it will provide a runtime environment for the flash 
applications. The flash engine will adhere to the guidelines of 
the platform service layer i.e only one engine will be active at 
any instant of time. The API’s from the flash application layer 
will be implemented in the adaptation layer. The Flash 
application extracts services from the below layers through 
Flash Application Program Interface (FAPI). It is an API 
specification in scripting language called action script.  

The adaptation layer is introduced in order to make the 
application developed using FAPIs to execute on top of 



UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765] 

185 

middleware platform. FAPIs are only the API specifications 
and hence it needs to be implemented in the adaptation layer. 
The adaptation layer is responsible for implementing all FAPIs 
classes in native language, creating and maintaining equivalent 
native object for every FAPI object created in application 
layer and provide a unique handle for every object. For every 
FAPI implementation there should be a reference to identify 
the FAPI object context. In order to achieve this, whenever a 
FUAPI class object is created in the application layer, 
corresponding native object (instance of a structure) also 
created in the adaptation layer. The adaptation layer provides a 
unique handle to every created object to identify FAPI object 
context. This handle shall be associated with FUAPI class 
object using the binding layer. The middleware abstracts the 
hardware and the OS of the STB to the above layers. 
Middleware is responsible for collecting the raw data that is 
received from the service provider, process it and make that 
content available to the application. The services provided by 
the middleware include memory management, access to the 
MPEG decoder/demultiplexer, TCP/IP return channel, 
graphics support, data tables, and conditional access and TV 
services.  

 
Figure 2. Set top box flash architecture. 

IV. FLASH ENGINE 
The component design of the flash engine is shown in 

figure 3. Only one engine of the STB will be active at any 
instant of time. The flash engine is similar to the EPG engine 
and the browser engine with respect to the engine 
initialization, start-up, shutdown, execution and event 
handling. System related requests like memory, timers, event 
management etc are made directly to the core of the 
middleware. Graphics related queries like surfaces, fonts, 
rendering etc are made to the graphics component of the 
middleware. Service information, tuning and other parameters 
are exposed via action script interfaces and are routed through 
the middleware. 

A. Adobe Flash Lite Engine 
The Adobe flash lite engine exposes two types of 

interfaces. 

SI: - To be implemented by the host that will be triggered 
by the flash engine. 

FI: - It is the player interface to the host. The host invokes 
this interface from port layer as well as from the flash engine 
client module. 

 
Figure 3. Flash engine components. 

B. Flash Engine Port 
This port module is multilayered and consists of AFL 

porting layer and STB porting layer. The AFL porting layer 
implements the SI interfaces required by the flash engine. This 
layer maintains all the information specific to Adobe flash lite 
and calls the STB port layer to get the actual functionality 
done. The STB port layer is a reusable port layer for the core 
and the graphics of the middleware.  It can be used by any 
third party engines. It abstracts the STB specific 
implementation and communicates with the core and graphics. 
The major components of the flash engine port are. 

Graphics: - This module is responsible for implementation 
of graphics (fonts, frame buffer, hardware rendering). It 
interacts with the surface and font memory module, which 
makes call to the graphics component. 

URL: - This module implements the URL APIs to load 
files from HTTP, file etc. It interacts with the core and the 
load status s notified via FI interface. 

Memory: - The memory module is responsible for the 
implementation of the memory related APIs of AFL. Runtime 
memory allocation during the initialization of the flash engine 
will take place via this module. It has specific APIs for 
memory allocation from the system heap as well as from the 
contiguous memory device for image decoding and bitmap 
caching. 

Sound: - This module is a pass through module to 
middleware for playing MP2. The porting layers will expand 
for MP3 implementation. 

Timer: - This provides current system time and UTC time 
in millisecond. 

Control: - This module will log the traces in action script 
and is responsible for error management. 



UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765] 

186 

Image: - This module is aimed to support asynchronous 
image decoding for the images formats such as PNG, BMP, 
etc that are not  supported by flash engine on runtime. 

C. Flash Engine Client 
This module is primarily responsible for initialization and 

start up of the flash engine, termination of flash engine, event 
handling and invokes the respective functions in the AFL port 
layer. 

D. Communication Flow 
SI: - This flow is from the Adobe flash lite engine to the 

porting layer, which in turn makes a call to the middleware to 
provide the relevant functionality. 

FI: - This flow is from the porting layer back to AFL to 
notify events from the middleware components related to 
asynchronous request raised by the flash engine calls. These 
calls are the replies to the SI calls. 

V. PERFORMANCE 
CONSIDERATIONS FOR FLASH 

APPLICATIONS 
Flash applications on PC are faster and the same 

application crawls on the STB. This is mainly due to the 
processor power. Hence, we cannot take an application written 
for PC and try to run it on the STB as it will expect same 
performance. This is due to the fact that flash applications 
written for PC do not consider the memory and performance. 
The following guidelines can be taken into consideration 
during the flash application development. 

Stage Size: - The stage size (width and height) of the flash 
document should be set to match the device resolution. This 
will avoid scaling, which impacts performance. 

Hidden Movie clip:- Use bitmap caching option on the 
movie clip instance of a vector graphic which is being used in 
animations and in recurring drawings. This has an impact on 
memory and hence care should be taken while cashing vector. 
Also frequently changing vectors (inside an animation) should 
not be cached as it will impact performance due to cache 
creation and destruction inside the animation window. 

Memory versus Performance: Caching of movie clips and 
objects improves performance but increases memory and 
hence this trade off is at memory availability and hence left to 
the user discretion. 

Animations in Timeline: Maximize the animation 
definition in timelines rather than doing everything in code as 
it betters and improves performance. 

Objects in memory: Load only the objects and movie clips, 
which are required for that instance. After usage, unload 
unwanted movie clips and objects so that memory will be 
freed.   

Movie clip Behavior: It is easier to manage and update 
actions in the movie clips itself rather than in an external AS 
file.  

XML: Avoid loading and parsing XML files as it 
consumes processor and affects performance. If external data 
is required, it is better to use name-value pairs. 

Explicit Function Definition: Functions must be defined 
explicitly as they are more efficient that anonymous functions. 

Math and Floating Point: Minimize the use of math 
functions and floating point values. Pre-calculate the math 
functions and store the values in array. The array access will 
be faster that runtime calculations. 

First frame initializations: Even though pre-loading the 
content in the beginning helps, it directly impacts memory and 
start-up time. Space the content throughout the movie so that 
movieclip and other objects are created and initialized when 
they are used. 

VI. RESULTS 
Flash can be successfully ported on to the STB. The 

interactivity can be further improved by enhancing the look 
and feel of the user interface. Also interesting flash games can 
be integrated into the application layer of the STB to attract 
more viewers. The usage of flash increases the response time 
of the STB by 20%. The figure 4 shows the EPG on the TV 
screen. 

 
Figure 4. Flash Electronic Program Guide. 

VII. CONCLUSION AND FUTURE 
ENHANCEMENT 

Flash is a proprietary technology of Adobe. As Flash is 
used in the User Interface(EPG) there is a need for packages 
that support flash. Flash is not open source, it has to be 
purchased from Adobe. Hence, this adds to the cost of the 
project. After flash is used in the application layer of the STB 
the interactivity can be taken to the next level. Many 
companies can take advantage of porting flash on to the STB 
to increase the number of viewers. Further, as flash is widely 
used in web and supports streaming, the STB can be 
connected to the internet and view online videos and 



UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765] 

187 

download flash game. This enhancement is possible with the 
availability of required infrastructure in the STB. 

References 
[1] Dobbie, W, “Interactive electronic programme guides”, IEE Half-day 

Colloquium in Navigation in Entertainment Services 1998,pp. 1-5. 

[2] http://en.wikipedia.org/wiki/Adobe_Flash_Lite  , June 2011. 

[3] Rudolf Jaeger, “Set-Top Box Software Architectures for Digital Video 
Broadcast and Interactive Services”. IEEE International Conference in 
Performance, Computing and Communications 2001, pp. 287-292. 

[4] Minhong Yun,  Jaeho Lee,  Woosik Kim, Sunja Kim, “UI Player 
Framework for Mobile Devices” The 9th International Conference on 
Advanced Communication Technology 2007,  pp.151-154. 

 


