
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

169

Practical Free-Form Search over Relational Databases

Mohammad Hassan,
Computer Science Dept.

Zarqa University,

Zarqa-Jordan

mohdzita@zu.edu.jo

Abstract: This paper presents a tool that enables non-

technical end-users to use free-form queries in exploring

relational databases with simple and direct technique, in a

fashion similar to using search engines to search text files on

the web. This allows web designers and database developers

specially in small business sectors to publish their databases for

web browsers exploring in practical way. We assume that each

database to be processed in our approach is 'about' a

particular type of object, where only certain tables and certain

attributes will be the 'public' ones and likely to be searchable

on the web. The proposed approach can be used for both

Internet and Intranet application areas. Our technique has

been borrowed from the similar techniques used for

information retrieval (IR), mainly for text and document

databases; it supports working smoothly with the structured

information stored in relational databases.

Keywords: Relational Databases, information retrieval,

keyword-based search.

I. INTRODUCTION

Keyword search is a method of extracting information

from data sources by providing a set of terms as input [1].

Keyword search is the most popular information discovery

method because the user does not need to know either a

query language or the underlying structure of the data. The

search engines available today provide keyword search on

the top of sets of documents. When a set of keywords is

provided by the user, the search engine returns all

documents that are associated with these keywords. Users

can follow hyperlinks to navigate from one document to the

other. No knowledge of schema is needed.

In addition to documents, a huge amount of information

is stored in relational databases, but information discovery

using keyword search on relational databases is not

supported well and usually need advanced techniques to

operate it. The user of relational database needs to know the

schema of the database, SQL or some QBE-like interface,

and the roles of the various entities and terms in the query

[2]. That requires users to know the organization and the

contents of the database they are accessing. Since this is not

always the case, specially when users are searching a public

Web-database. It is important that users be able to search

relational databases without a priori knowledge of the

databases’ schemas or the location of required information,

that enable users to seamlessly search information stored in

these databases as well. Searching databases on the Internet

and on private networks)Intranets) today is primarily

enabled by customized web applications closely tied to the

schema of the underlying databases, allowing users to direct

searches in a structured manner. While such structured

searches over databases are no doubt useful, unlike the

documents world, there is little support for keyword search

over relational databases.

Our goal is to enable such searches without necessarily

requiring the users to know the schema of the respective

databases. Yet, today’s customized web applications as

described above and traditional SQL applications require

knowledge of the schema.

Keyword-based search is a well studied problem in the

world of text documents [3, 4] and Internet search engines.

Inverted lists are common data structures used for solving

keyword queries. However, it is not an easy process when

structured databases are involved. It is even more

complicated in a dynamic environment like the Internet

where varying or unknown database structure makes the

query formulation process a very difficult task. Furthermore,

most commercial systems that provides keyword search on

data stored in relational databases (or documents i.e., search

engines) tends to hide how exactly these systems handle

keyword quires, (often for commercial reasons). So, detail

reference materials are not publicly available [5].

The rest of the paper is organized as follows. Related

works are reported in Section 2. The proposed approach is

described in Section 3. Prototype is reported in Section 4.

Section 5 includes the summary and the conclusions.

II. RELATED WORKS

A number of different approaches and techniques for

enabling keyword search over relational database have been

proposed. For instance, BANKS [6] is a system that enables

keyword-based search on relational databases, together with

data and schema browsing. Its algorithm works on a graph

(data graph), with tuples as nodes and the weighted link

between them signifies the degree of correlation between

them. A drawback of this approach is that a graph of the

tuples must be created and maintained for the database, and

the algorithm works on a huge data graph. Furthermore, the

query evaluation with keywords matching a large number of

tuples (nodes within the data graph) can be slow. This

problem arises because of performing backward search from

large number of nodes, which is the technique used for such

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

170

queries. DataSpot [7] is a commercial system that supports

keyword-based search by extracting the contents of the

database into a hyperbase. Thus, this approach duplicates

the contents of the database, making data integrity and

maintenance difficult.

DBXplorer [8] describes a multi-step system to answer

keyword queries in relational databases. Even this approach

is using a schema graph (not a data graph) that can be

considered smaller than the data graph used in BANKS, the

graph must be created and maintained for database.

EasyAsk (www.easyask.com) is another commercial system

that provides natural language search (including keyword

search) on data stored in relational databases. EasyAsk does

a variety of tasks such as approximate word matching and

natural language understanding. However, details of how

they handle keyword queries are not publicly available [5].

Several other approaches were also presented such as [9,

10].

Most of the keyword search techniques have one thing

in common, namely the basic representation of the database.

They all implement it using graphs. Although some call it a

semantic network, data graph, schema graph, and some

other abstraction graph, they basically have the same

underlying graph structure [1]. These graph structures are

necessarily for these approaches, since they should take all

relationships between tables in the database into account for

identifying the required results. In our approach we have not

used graph structures that consider an expensive and

difficult task.

III. The Proposed Keyword Search Approach

 Given a relational database, our system offers a

flexible interface to access/retrieve only database items

relevant to a given query. This requires executing a search

process that depends on the database representative.

A. Database Representative

Information retrieval systems are concerned with

providing the information that the user seeks. In traditional

IR systems, different types of database representatives may

be available to the search system.

These representatives that characterize the contents of the

database are used to identify the data items within the

database (for example: documents) with the highest

potential to satisfy that information need. Depending on the

kind of information and the database representatives

available, different approaches have been proposed to

identify such data items. Most approaches require

information about the terms that appear in the database and

the statistical information related to these terms, such as,

term frequencies, document frequencies and term weights.

One of the most popular representatives used in distributed

search systems and information retrieval systems is the

inverted file. The inverted file is accepted as the classical

index structure for keyword search (in the world of text

documents). In its simplest form, an inverted file contains

records of the form: <word, document>, where the word can

be found in the document.

To serve our purposes, we modify the structure of these

inverted files to support keyword search over relational

databases and to determine whether the database (or

database granularity) contains useful information.

Traditional IR systems depend on the granularity of

documents, whereas our proposed approach that use the

modified inverted file stores information at database

granularity –specifically at row granularity- as we will

explain it later in this section. This modified inverted file is

an essential part of the required database representative in

our approach, which we call the database word-frequency

information.

Now we consider how the database representative of

each database can be created. This is a two part process in

which firstly a collective relation is created. This collective

relation is then used to build the database word-frequency

information.

B. The Collective Relation

We define the collective relation as the:

(outer) join of all publicly accessible (possibly renamed)

attributes.

We cannot generally define the attributes or nature of

the join. Without loss of generality, we assume that each

database to be processed in our approach is 'about' a

particular type of object, where only certain tables and

certain attributes will be the 'public' ones. This is the sort of

database and the type of data that we might expect to find on

the web and is the sort of database that we are considering

the keyword search problem for. We include the possible

renaming of attributes to reflect how the database appears

publicly rather than with names for attributes that may be

used within the database.

The selection of data portions to feed our proposed

selection process is not new. Many applications require

squeezing data from multiple relations into a single table in

order to meet the processing requirements, for example Data

Mining processes. Such applications require the data to be

structured in only one relation (or data file), so the

preparation of the data to be submitted to them is a process

usually considered as part of cleaning and pre-processing

steps. Several works have been proposed, aiming to enable

exploratory data analysis of massive datasets, and to help in

finding interesting data subsets to process. The problem of

attribute selection is part of these works [11].

The collective relation enables our approach to

represent and handle structural information in a simple and

easy way (no table joins are involved). Extracting the

database word-frequency information from a Collective

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

171

relation will not take the relationships between tables into

account and they will not be represented, hence the database

word-frequency information will be much smaller. As a

consequence there will be no need for using any kind of

graph structures, the technique used in most (keyword-

based) relational database searching approaches. This may

be considered the important aim of using the collective

relation technique.

We should reconfirm that we are regarding each

database as about something in particular (cars, books,…

etc.) and that the collective relation is the possibly

unnormalized information about that 'entity' or object and

that all other tables are not part of that.

The concept of creating a collective relation in our

approach is similar (to a certain extent) to work on universal

relations [12], where a database is viewed as a single

universal relation for querying purposes, thus hiding the

complexity of schema normalization. Although the proposed

collective relation in our approach is similar to the universal

relation concept (viewing the database as single relation),

there are many differences between the two concepts, and

some important differences are:

 The collective relation in our approach contains

only the data that is made publicly available and

therefore searchable externally, not all data stored

in a database as in universal relations.

 No assumptions are imposed while building the

collective relation, while in universal relation

several assumptions are essential such as the

uniqueness assumption and the universal instance

assumption. Moreover, normalization is not a

requirement in the proposed collective relation,

such a relation could be built by combining the

needed attributes (tables) using (normal) join

operations.

The concept of collective relation in our approach is

also similar to work on master relations that introduced in a

previous paper by me and other authors [13], that serve

different purposes. So, the first step in our approach is to

create the collective relation that combines all the required

information needed to be searched in order to create the

database representation which serves the purpose of our

approach.

Creating the collective relation, which considered the

first step of creating the database word frequency

information that will form the database representative, will

be done by the database administrator. The database

administrator has to decide what portions of the database

should be included within the collective relation. It is

important to note that in our approach, choosing the required

data elements should in all cases be an easy task, because

the administrator should have knowledge about the

searching goal.

The task starts by creating a collective relation (table)

that combines all the data required to be searched within the

database. The administrators should choose only the tables,

fields and records that may be searched while building this

relation. Data items included within this relation have to be

chosen carefully, such that each of them is semantically

meaningful for the keyword-based queries. Many tables or

fields or even records will not be usefully included within

this relation; such fields usually do not contain significant

data while applying a keyword search over the data. We

assume here that the database administrator has or can

obtain the information above.

The example database used in the experimental results,

are about used cars agent. A realistic used car database may

contain many tables and attributes (or records) that should

not be included in the collective relation, because they do

not contain significant data for the process our approach is

concerned with. For example, attributes like:

Vehicle plate number, engine number, chassis

number, engine capacity, maximum capacity,

vehicle weight, number of axles,.. etc.

and tables about:

Vehicle License with attributes: place of issue,

(date: from - to).

Finance Data with attributes: cost price.

Vehicle Status with attributes: status

(booked/sold), buyer detail.

Vehicle History with attributes: previous owners,

maintenance records, accidents.

should not be included within the collective relation of the

database, because they do not contain significant data while

applying a keyword search over the data (cars) or in any

advertising about the cars by any used car dealer. It is

obvious that all cars with sold or booked status should not

be represented within the database representative. In this

case all records where the status attribute is (booked or sold)

should not be included within the collective relation.

C. The Database Word-Frequency Information

Using the collective relation introduced above, we can

create the database word-frequency information (that has

records with the following structure: <word, row#>, where

the word (keyword) can be found at row# granularity of the

collective relation.

While creating this database word-frequency

information, we may reduce the words in the collective

relation to their stems using a stemming algorithm. We also

may leave out frequently occurring words with little

semantics (stop words) using a stopping algorithm.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

172

In a relational database environment, creating the

collective relation can be done easily either using an SQL or

some QBE-like interface (for example: make table query).

Creating the database word-frequency information could

also be done automatically using simple algorithms that

work on the previously described collective relation. We

developed an application for building these statistical

information as part of our prototype using Java and JDBC.

Table-1 shows a portion of the database word-frequency

information extracted from the collective relation of the

example database.

D. Query Representation

Our approach considers Boolean queries that consist of

atomic subqueries (single keywords) connected by a

Boolean operator (“and”, “or” / “not” may also included).

So, a query in our model can be represented by an unordered

subset of W, where W={w1,w2, ….,wn} is the set of all words

in the database word-frequency information relation.

We consider Boolean queries, even if the Boolean

model is not favored in all situations compared to other

model types, such as: vector space model, probabilistic

model, natural language model, etc. which could be adopted

easily. However, most current commercial online services

and information vendors worldwide as well as traditional

library systems support Boolean query models to access

their databases, offering well-maintained information in

many fields such as science, business, and law. Furthermore,

Boolean queries could be used and easily expressed in

searching relational databases by utilizing standard RDBMS

query language functionality. Therefore, we believe that

supporting the Boolean model is critical for providing

integrated access to both modern and legacy systems in

order to provide access to their valuable contents.

E. The proposed approach

Our keyword-based approach is easy to describe. Given

a relational database along with its collective relation and its

database word-frequency information. Given a query that

consists of terms and logical operator. We view our

approach as retrieving all records/rows (in the collective

relation) that satisfy the query.

IV. PROTOTYPE SYSTEM

The objective of our prototype system is to demonstrate

the feasibility of building the proposed keyword search

approach. As we introduced in the previous section, the

process starts by creating a single collective relation that

combines all the data required to be searched within the

database. Collective relations are considered the basic

structures in our approach. Using the collective relation, we

can build the database word-frequency information needed

by the system.

To perform experiments we used (a real) example

database. The example database is small for exposition

purposes and suitable to illustrate the general concept that

make up keyword search algorithm and the functionality

associated with it. The example database store information

about “cars” of a small used cars selling company. The

database is managed by SQL-Server.

All of the above process has been incorporated in a

prototype developed as a web-based application using Java

and JDBC. An example screen of the graphical user

interface of our system along with a search query for two

terms with “AND” operator is shown in Figure 1.

Figure 1: The User Interface and Search for “Honda” and “red”

keywords.

V. CONCLUSIONS, EVALUATION AND FUTURE

WORK

In this paper, we described a mechanism that enables

users to search relational databases with simple word-based

queries. We provided an overview of our proposed

approach, which has been implemented as a Web based

application.

To support relational query processing using keyword

search, a collective relation for the database was introduced.

Such a relation is supposed to combine all data, which may

Table 1: A portion of the database word-frequency information

extracted from the collective relation of the example database.

 row#
word

1 2 3 4 5 ….. ….. 73 74 75

4WD 0 0 0 0 0 0 0 0

Accord 0 0 0 0 0 0 0 0

Audi 1 1 0 0 0 0 0 0

Honda 0 0 0 0 0 0 0 0

Japan 0 0 0 0 0 0 0 0

Manual 1 0 1 1 0 1 0 1

Red 0 1 0 0 0 1 0 0

Sedan 0 1 1 1 0 0 1 1

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

173

be searched within the database. The collective relation is

considered the source of the database representative, from

which the database word-frequency information could be

extracted. Also, we gave the necessary modification to the

inverted file to take the structure of relational databases into

account. Finally, a prototype for each part of the proposed

approach has been developed and implemented.

One possible drawback of using a collective relation is

that the size of this relation may become large (depending

on the size and the structure of the database). This might be

particularly significant with databases including numerous

one-to-many relationships where an almost exponential

growth could in theory be possible. However, for the class

of database we consider here, limiting the

tables/attributes/records to those publicly available for

querying on the web, there will be a limit to this growth.

In this work we will limit our study to the restricted

class of database likely to be searchable on the web as

outlined above. We do not investigate the issues of possible

distortion of the relative weighting of some database

attributes or alternative representations.

Regarding the evaluation of the proposed approach,

researchers generally use the two well-known parameters,

recall and precision. Recall and precision may be

considered as an attempt to measure what is known as the

effectiveness of the retrieval system. Effectiveness is purely

a measure of the ability of the system to retrieve relevant

documents (records in our approach) while at the same time

holding back non-relevant ones. It is assumed that the more

effective the system is, the more it will satisfy the user. It is

also assumed that precision and recall are sufficient for the

measurement of effectiveness.

According to our approach, issuing queries to the

system is equivalent to issuing queries to the collective

relation that represent the actual database, which controlled

by the standard RDBMS query language functionality. So,

the results of such queries will be exact. This means, for any

query, all of the retrieved results/records are relevant

(recall), and in the meanwhile all of the actual relevant

records will be retrieved (precision). Hence, the

effectiveness of such approach depends on the collective

relation and how much it reflects the required data within

the actual database.

Currently, we are working on different query models

along with evaluating the storage requirements of the

proposed approach.

REFERENCES

[1] R. Nasre, Keyword Search in Databases, Mtech Project, Department

of Computer Science and Engineering, IIT, Mumbai, India, 2002.

 [2] V. Hristidis, and Y. Papakonstantino, DISCOVER: Keyword Search
in Relational Databases. Proceedings of the 28th International
Conference on Very Large Databases, Hong Kong, China, 2002.

[3] G. Salton, Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer, Addison
Wesley, 1989.

[4] L. Gravano, Querying text databases and the web: beyond traditional
keyword search: Proceedings of the First International Workshop on
Keyword Search on Structured Data, Rhode Island, USA, 2009.

[5] A. Hulgeri, G. Bhalotia, , C. Nakhe, and S. Chakrabarti, Keyword
Search in Databases, IEEE Computer Society Technical Committee
on Data Engineering, 2001.

[6] A. Hulgeri, G. Bhalotia, , C. Nakhe, and S. Chakrabarti, Keyword
Searching and Browsing in Databases using BANKS. Proceedings of
the 18th International Conference on Data Engineering, California,
USA, 2002.

 [7] S. Dar, G. Entin, , S. Geva, , and E. Palmon, DTL's DataSpot:
Database Exploration as Easy as Browsing the Web, ACM SIGMOD
RECORD, p: 590-592, 1998.

[8] S. Agrawal, , S. Chaudhuri, , and G. Das, DBXplorer: A System for
Keyword-Based Search over Relational Databases, Proceedings of the
18th International Conference on Data Engineering, California, USA,
2002.

[9] K. Stefanidis, M. Drosou, and E. Pitoura, PerK: personalized keyword
search in relational databases through preferences. In EDBT, pages
585–596, 2010.

[10] X. Jeffrey, L. Qin, L. Chang, Keyword Search in Relational Databases:
A Survey. IEEE Data Engineering Bulletin,Vol. 33, No. 1, 2011.

[11] S. D’zeroski, and L. De Raedt, Multi-Relational Data Mining: a
Workshop Report, 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-02), Edmonton,
Canada, 2002.

[12] C. Date, An Introduction to Database System. Addison-Wesley,
Publishing Company, sixth edition, 1994.

[13] M. Hassan, R. Alhajj, M. Ridley, and K. Barker, Simplified Access to
Structured Databases by Adapting Keyword Search and Database
Selection”. Proceedings of ACM Symposium on Applied Computing
SAC2004 - Nicosia, Cyprus, 2004.

http://www.computer.org/proceedings/icde/1531/1531toc.htm
http://www.computer.org/proceedings/icde/1531/1531toc.htm
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Jeffrey_Xu.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/q/Qin:Lu.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chang:Lijun.html
http://www.informatik.uni-trier.de/~ley/db/journals/debu/index.html

