

O

A Metric Extent for Component based

Software Products

Kumar Rahul Dr B K Sinha
Email: hitechsmart@gmail.com Email: brijeshsinha@gmail.com
Research Schoar, Mewar University, Dean(Engineering), Rama Engineering College

Chittorgarh(Rajasthan) Ghaziabad(UP)

Abstract—The overriding goal of software engineering is to

provide a high quality system, application or a product. To achieve

this goal, software engineers must apply effective methods coupled

with modern tools within the context of a mature software process

[2]. In addition, it is also must to assure that high quality is realized.

Although many quality measures can be collected at the project

levels, the important measures are errors and defects. Deriving a

quality measure for reusable components has proven to be

challenging task now a days. The results obtained from the study are

based on the empirical evidence of reuse practices, as emerged from

the analysis of industrial projects. Both large and small companies,

working in a variety of business domains, and using object-oriented

and procedural development approaches contributed towards this

study. This paper proposes a quality metric that provides benefit

at both project and process level, namely defect removal

efficiency (DRE).

Keywords—Software Reuse, Defect density, Reuse metrics,

Defect Removal efficiency.

I. INTRODUCTION

VER the past ten years, the software reuse and software

engineering communities have come to better

understanding on component-based software engineering. A

good software reuse process facilitates the increase of

productivity, quality, and reliability, and the decrease of costs

and implementation time [3]. An initial investment is required

to start a software reuse process, but that investment pays for

itself in a few reuses. In short, the development of a reuse

process and repository produces a base of knowledge that

improves in quality after every reuse, minimizing the amount

of development work required for future projects, and

ultimately reducing the risk of new projects that are based on

repository knowledge [1]. In this context, defect removal

efficiency can be used as quality metric when developing a

software product.

A. Software Reuse

Software reuse is the process of implementing or updating

software systems using existing software assets. Software

assets, or components, include all software products, from

requirements and proposals, to specifications and designs, to

user manuals and test suites [3]. Anything that is produced

from a software development effort can potentially be reused.

Reuse can be achieved through different modes.

Compositional reuse involves constructing new software

products by assembling existing reusable assets, while

generative reuse involves the use of application generators to

build new applications from high level descriptions [4].

B. Present State in the Reuse World

In industry, information on defect density of a product

tends to become available too late in the software

development process to affordably guide corrective actions.

An important step towards remediation of the problem

associated with this late information lies in the ability to

provide an early estimation of defect density [7]. In the

current scenario, testing is the key method for dynamic

verification and validation of a system. Any deviation from

the system’s expected function is usually called as a failure

and these failures are communicated to the developers by

means of failure repots. The terms error is used both for

execution of a “passive” fault leading to erroneous behavior or

system state [6], or for any fault or failure that is a

consequence of human activity [5]. Some times the term

defect is used instead of faults, errors or failures, not

distinguishing between active or passive faults or

human/machine origin of these. In this paper, we are

proposing a quality metric for the estimation of defects.

C. Productivity Benefits on Reuse

Reuse has been advocated as a means for reducing

development cost. For example reuse of components is

identified as one of the most attractive strategies for

improving productivity. It improves productivity, because the

life cycle now requires less input to obtain the same output or

productivity may increase simply because fewer work

products are created from scratch. In general, reuse improves

productivity by reducing the amount of time and labor needed

to develop and maintain a software product. Based on data

presented in [3], we can conclude that there is strong

relationship between productivity and reuse rate, which is

shown in Fig. 1.

B-> Binary Image

Fig. 1 Relationship between productivity and Reuse

D. Quality Benefits on Reuse

The accumulated defect fixes result in a higher quality work

product because work products are used multiple times,

Moreover, Reuse prevents and removes defects earlier in the

life cycle because the cost of prevention and debugging

defects can be amortized over a greater number of uses [8].

According to the data presented in [3], there is a strong linear

relationship between reuse rate and project error density

(quality), which is shown in Fig. 2.

Fig. 2 Relationship between Quality (error density) and Reuse

E. Defect Removal Efficiency (DRE)

DRE is a measure of the filtering ability of quality

assurance and control activities as they are applied throughout

all process framework activities. The computation of DRE can

be done as follows [2].

DRE=E / (E+D)

where E is the number of errors found before delivery of

software to the end-user. D is the number of defects found

after delivery.

The ideal value of DRE is 1. As E increases for a given

value of D, the overall value of DRE begins to approach 1.

We can also define DRE as DRE i = E i / (E i + E i+1)

Where Ei is the number of errors found during i
th

software

engineering activity and E i+1 is the number of errors found

during the software engineering activity i+1 those were not
discovered in the activity i. ie, The errors that are not
found during the

review of the analysis phase are passed on to the design phase.

Fig. 3 shows the defect removal process during software

development life cycle (SDLC).

Fig. 3 Defect Removal Process During SDLC

F. Redefinition of DRE in the Reuse Context

Classifying and counting defects helps focus problem

solving and root cause analysis efforts. Historical defect data

can assist organizations early in the project planning process

to predict defect insertion and find defect counts for each

component integration stage .It is also important to recognize

the rate at which defects accumulate.

Defect insertion and removal process over the course of a

reuse based development scenario are summarized in Fig. 4.

The left curve illustrates that defect insertion (in the form of

inappropriate match, requirement compromise etc.) begins

when the project effort begins. The second curve illustrates

that finding and fixing defects most often occurs substantially

after the initial component testing.

In the incremental approach of Integration or When COTs

are used for software development, we can redefine DRE as

DRE i = E i / (E i + E

i+1)

where Ei is the number of errors found in the i

th
component and

E i+1 is the number of errors found after integrating i+1
th

component with the i
th

component. In this context, to obtain

the high quality product, DRE for the whole product should

approach 1. That means finding all errors of each component

ensures the ideal value for DRE.

Fig. 4 Defect insertion and find and fix Scenario

II. IMPLEMENTATION

A. Data Set Required for DRE Computation

No. of errors found in component 1(c1)

No. of errors found in component 2(c2)

…………………………………….

No. of errors found in component n (cn)

Compute DRE i = E i / (E i + E i+1) before each integration.

B. Planning a Defect Profile

For each stage of the COTs based Software development,

the following steps can be adopted.

Steps Involved:

Step1.Estimate the number of defects likely to be inserted (n)

Step2.Estimate the removal efficiency (y as %)

Step3.Calculate the number of defects likely to be removed

(y*n)

Step4.Calculate number remaining (n-y*n)

Step5.Add to estimate of the number likely to be added in next

stage of component integration

Step6.Calculate cumulative removal efficiency (as %)

Fig. 5 Defect insertion Rate and Removal effiency

The Fig. 5 shows the different stages of defect insertion

rate, removal efficiency and cumulative efficiency in the

component based software development process. In the figure

only three phases of integration are shown. The process will

continue till the final product development completion. After

this process, there is a defect-reporting phase. This phase

consists of following steps.

C. Defect Reporting Phase

Step 1. Defect Log (Where found, date found, type, stage

injected, stage removed, consequences of removal, time to

repair, etc)

Step2. Defect report forms (Location, severity, inspection

rates, yields, etc.)

III. CONCLUSION

The success in development, maintenance and continued

improvement of the systems has been achieved by a careful

reuse of components. The reuse orientation provides many

advantages, but it also requires systematic approach in design,

planning, extensive development, support of a more complex

maintenance process, and in general, more consideration

being given to quality (error density) of components. The

more a reusable component is developed, the more complex is

the development process and more support is required from

the organization to ensure the quality of the developed

product. This paper redefines the basic definition of defect

removal efficiency in terms of the phases involved in the reuse

based development and also gives a systematic approach in

the defect removal process.

ACKNOWLEDGMENT

This study has been possible thanks to the support and

collaboration of several industry people they are directly or

indirectly contributed towards the successful completion of

this research.

REFERENCES

[1] Kimberly Jordan, MJY Team, George Mason University, “Software

Reuse Term Paper For The MJY Team”, Software Risk Management

WWW SITE, Apr.1997.

[2] Roger S Pressman, Software Engineering-A practitioner’s

approach, 5th Edition, McGraw-Hill, 2001.

[3] V. Basili, L. Briand, and W. Melo., “Measuring the impact of reuse on

quality and productivity in object-oriented systems.” Technical Report

CS- TR-3395, University of Maryland, Computer Science Department,

1995.

[4] Barnes, B. H., Bollinger, T. B., "Making Reuse Cost-Effective," IEEE

Software, Vol. 8, Number 1, January 1991, pp. 642-652.

[5] J. E. Gaffney, Jr., R. D. Cruickshank, “A general economics model of

software reuse”, Proceedings of the 14th international conference on

Software engineering, Melbourne, Australia, May 11-15, 1992, pp.327-

337.

[6] Fonash P., “ Metrics For Reusable Software Code Components”, PhD

Dissertation, George mason University, Fairfax, Virginia, 1993.

[7] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, Henrik Schwarz,

“An Empirical Study of Software Reuse vs. Defect- Density and

Stability”, Simula Research Laboratory, P.O.Box 134, NO-1325

Lysaker, Norway.

[8] Lubars MD, Affording Higher Reliability Through Software Reusability,

Software Eng. Notes, Oct. 1986.

[9] Fenton, N.E., Ohlsson, N., “Quantitative Analysis of Faults and

Failures in a Complex Software System”, IEEE Trans. Software

Engineering, 26(8), 2000, pp. 797-814.

[10] Malaiya, K.Y., Denton, J., “Module Size Distribution and Defect

Density”, Proc. 11th International Symposium on Software Reliability

Engineering- ISSRE’00, 2000, pp. 62-71.

[11] Fonash P., “Metrics For Reusable Software Code Components”, PhD

Dissertation, George mason University, Fairfax, Virginia, 1993.

[12] Sherriff, M., Nagappan, N., Williams, L., and Vouk, M. A., "Early

Estimation of Defect Density Using an In-Process Haskell Metrics

Model," First International Workshop on Advances in Model-Based

Software Testing, St. Louis, MO, May 15-21, 2005.

