
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

126

 Validating Object Oriented Design Quality using

Software Metrics

Vibhash Yadav

Computer Science & Engineering Department

Krishna Girls Engineering College,

Kanpur, India

vibhashds10@yahoo.com

Prof. Raghuraj Singh

Computer Science & Engineering Department,

Harcourt Butler Technological Institute,

Kanpur, India

rscse@rediffmail.com

Abstract- Software Metrics have been traditionally used as

primary source for determining the Software Product Quality. In

this paper, we propose an approach for determining the design

quality of an Object Oriented Software using software metrics.

To validate the proposed methodology, we have chosen three

Open Source software projects of good, average and bad design

quality which is known priori. For each of these projects, we

extracted a set of chosen software metrics that play a definite role

in software design quality. After applying various required

normalizations on these metric values, we determined the design

quality for the above stated three projects. We found that

software design quality determined in this way was in

confirmation with the priori known end product quality. The

outcomes of the experimental study provide a strong base for the

effectiveness of our proposed approach for metric based design

quality measurement of object-oriented software.

Keywords— Metrics, object oriented design,coupling, cohesion

etc

I. INTRODUCTION

Measuring the design quality early during software

development has been regarded as a prominent way to assure

the quality of software products. Several models have been

proposed to estimate the quality of software systems. They are

based on prediction of fault proneness of software module

[1,2,3], on detection of anti pattern [4] which is known to be

bad coding practices, based on object oriented metrics [5, 6]

and visualization technique [7]. Much prior work on quality

measurement with several proposals of design metrics came

out along with measurement data analysis for software system.

However to the best of our knowledge as long as no general

design standard exists. General metric threshold values are

difficult to determine. Even though rules for writing code can

be constructed and metrics can be used to assure that the rules

are followed [8]. So there is lack of straight forward rule for

selecting appropriate metrics to measure design quality of

software.

In our approach, the various metric values have been evaluated

using various open source tools of metric calculation like

metric 1.3.4, JHawk, TeamInABox [3, 9]. Thereupon, metric

are being analyzed and differentiated on the basis of their

potential to indicate the design quality of the object oriented

software systems. Some metrics show uniformity of results,

that is to say that they are either giving high values or low

values, for the design quality of the various software systems

already known. But, others are random, not giving clear

indication of design quality; there values do not follow any

proper pattern or trend of values. Based on this demarcation,

good design indicators are selected while others not paid heed,

for our further analysis.

II. RELATED WORK

Various efforts have been previously made to measure the

design strength and design quality of Object Oriented

Software Systems. Khadim M. Breesam et al. [10] validated a

set of metrics empirically that could be used to measure the

quality of an object oriented design in terms of the class

inheritance. Sastry et al. [11] tried to implement software

metrics with aid of GUI & also analyzed relationships of

metrics to determine the quality of software attributes

measured with regard of object oriented software development

life cycle. Shaik et al. [12] have performed statistical analysis

for object oriented software metrics on CK metric suite by

validating the data collected from projects of different modes.

Bansia J. et. al. [13] presented a hierarchical model for

assessment of design quality of Object Oriented Software

Systems in quantitative terms using various lower level and

higher level quality metrics / parameters. Validation of

software metrics shows that metrics actually allow conclusions

on the quality of software. Most studies conclude that metrics

are indeed a valid indicator for quality of software, defect

detection, maintainability etc. Metric data provides quick

feedback for software designers and managers. Analyzing and

collecting the data can predict the design quality [12]. If

appropriate used, it can lead to a significant reduction in costs

of the overall implementation and improvements in quality of

the final product [11,12,14]. Quality metrics propose strategies

on how analysis of source code with metrics can be integrated

in an ongoing software development project and how metrics

can be used as a practical aid in code and architecture

investigations on existing systems [14, 15, 16].

127

III. METHODOLOGY

A. Selection of Open Source Software

In order to evaluate our suggested approach we performed an

empirical analysis on several open source software by

encouragement from some prior research works. To test our

approach we selected these open source software with

different design quality level. We chose these software

systems on basis of their design quality obviously by

considering the designer of the software and the reputation in

software market.

TABLE I. CHOSEN OPEN SOURCE SOFTWARE WITH PRIOR

 KNOWN DESIGN QUALITY

Jdom High design quality

Taming Java Thread High design quality

Bonforum Medium design quality

EviewApplet Low design quality

Student project Low design quality

B. Selection of Metrics

It is always the hardest part for design quality measurement to

choose the appropriate metric suite for specific software as

software systems are dissimilar in size and complexity as well

as in design level [14]. As the most important measures for

software quality is Cyclomatic complexity, lack of cohesion of

methods, weighted method per class and lines of code are the

selected metrics. The experimental Work of chalking out

relationship between them through way of equations have

been done.

TABLE II: CHOSEN METRICS SET THAT INFLUENCE SOFTWARE

DESIGN QUALITY

Cyclomatic complexity (CC) Low value required

Lack of cohesion of

method(LCOM)
Low value required

Weighted method per
class(WMC)

Low value required

Lines of codes of

methods(LOCM)
Low value required

C. Evaluation of Metric Values

To obtain the above mentioned metric values for the chosen

software, we used the tools Metric 1.3.4, Team in a Box both

as plug-in for Eclipse and JHawk an open source software.

Using these tools we measured the metric values for all the

five chosen software. The results are summarized in this

section.

1. Metric Values Without Normalization

Metric values obtained by applying the evaluation tools

on the chosen software are detailed in Table III.

TABLE III: METRICS VALUES BEFORE NORMALIZATION

Software CC LCOM WMC LOCM

JDMO 3.13 0.241 37.17 6888

Taming 2.36 0.122 7.20 1407

Eview Applet 3.5 0.407 19.09 1364

StudentProject 3.5 0.407 19.09 999

Bonforum 5.3 0.33 47.15 3369

2. Primary Normalization

In our work, firstly we have normalized the metric values to a

standardized form using normalization model, so that they can

be compared irrespective of software sizes and complexity. At

primary normalization level metric values are scaled down to

standard unit of 10 kilo lines of code that provides a precise

look to software systems disregarding their size i.e. line of

codes. The primary normalization for each of the above

mentioned software is calculated as follows:

If M1, M2, M3,….. Mn are individual metric values then Primary

Metric Normalization value is given by

Ni= (1/10k)Mi i=1,2,3…n (1)

The results after primary normalization are summarized in

Table IV.

TABLE IV: METRIC AFTER PRIMARY NORMALIZATION

Software CC LCOM WMC

JDMO 4.54 0.35 53.89

Taming 16.77 0.86 51.12

Eview Applet 25.65 3071 265.19

Student

Project
35.00 4.07 190.9

Bonforum 15.73 0.97 139.56

3. Normalization at Comparison Level

Comparison level normalization is performed by setting a

metric threshold value among the comparing software group

and by calculating the percentile metric among peers [17].

Primary Normalized Metric, Ni is set to percent for the

comparing software, Sj it holds the maximum value and for the

other software systems S1, S2, S3,…. Sk. Ni value is calculated

to percentile normalization, PNik such as:

 PNik= (Nik/ PNmax)*Nij (2)

If Ni is max for Sj then Nij (primary normalized metric, Ni for

Sj) is named as Maximum percentile normalized metric and

changed as PNmax=Nij and another change done as Nij= 100.

The resultant metrics after comparison level normalization are

summarized in Table V.

128

TABLE V: METRICS VALUES AFTER NORMALIZATION

Software CC LCOM WMC

JDMO 12.97 8.5 20.32

Taming 47.91 21.13 19.27

Eview Applet 73.28 91.15 100

StudentProject 100 100 71.98

Bonforum 49.94 23.83 52.62

4. Normalization At Quality Rank Level

Finally, the design quality ranking level normalization is

done with weighted normalization average calculation,

defining range and providing design quality rank to each

software systems to indicate their overall design quality

level.

If PN1, PN2, PN3, ……….. PNn are individual percentile

normalized metric values of a particular software Sj then

weighted normalization average for Sj is

W(NAj)= (∑ PNi)/ n (3)

Range defines metric threshold value for weighted

normalization average for any particular software and lies

between zero and percent inclusive such as:

0<= w(NA) <= 100

Software System Normalized Quality Rank is Design

Quality Level (DQL) used for the comparing software

systems such that

DQL = { High if 0<= w(NA) <=25

 Medium if 25<= w(NA) <= 75

 Low if 75<= W(NA) <= 100

 }

Normalized metrics at quality rank level are summarized in

Table VI.

TABLE VI: METRICS VALUES AT DESIGN QUALITY LEVEL

Software CC LCOM WMC

JDMO 13.93 High High

Taming 29.43 High High

Eview Applet 88.14 Low Low

StudentProject 90.66 Low Low

Bonforum 40.46 Medium Medium

5. Co-relation analysis

After applying co-relation analysis on the metrics, we

concluded that the metrics CC, WMC, LCOM and LOCM are

strongly co-related to each other and the relation is

approximately liner. The results of co-relation analysis are

summarized in Table VII.

 ∑(A-Amean)(B-Bmean)

 RAB =-------------------------------- (4)

 N σα σβ

Standard deviation

 σ=(∑(A-Amean)
2
/n)

0.5
(5)

 σ cc = 0.9653

 σ LCOM = 0.1325

 σ

WMC = 14.28

Co-relation coefficient

 RA.B=[∑(A-AMEAN)(B-BMEAN)]/n σ A σ B (6)
 R CC, LCOM = 0.2725

 R LCOM, WMC = 0.457

 R CC, WMC= 0.7782

 Thus, CC & LCOM are positively co-related

 TABLE VII: CO-RELATION ANALYSIS FOR METRICS

Software CC LCOM WMC LOCM

JDMO 3.13 0.241 37.17 6888

Taming 2.36 0.122 7.20 1407

Eview Applet 3.5 0.507 36.18 1364

StudentProject 3.5 0.407 19.09 999

Bonforum 5.3 0.33 47.15 3369

Mean 3.558 29.35 29.35 2805.4

Std.

Deviation
0.9653 0.1325 14.286 --------

IV. RESULTS

A. Co-relation Results

After applying co-relation analysis on the metrics, we

concluded that the metrics CC, WMC, LCOM and LOCM are

strongly co-related to each other and the relation is

approximately liner. For example, Figure 1 depicts the

relationship between LCOM and CC.

129

Figure 1.

B. Normalization Result

When we calculated the metric values without normalization

for design quality measurement it could not reflect the

variation of the design quality level of individual software

systems much clearly. But when we introduced a slandered

platform of metric measurement for all software systems we

found clear indication of the variation of design quality of

software systems.

C. Regression Analysis

The scatter diagram indicates some relationship between the

two variable x and y, the dots of the scatter diagram are more

or less concentrated round a curve. This curve is called the

curve regression.

 The straight line about which the various points may

be considered as scattered is called the regression line. The

relationship is linear owing to the fact that there is a strong co-

relation existing between the metrics.

V. CONCLUSION

We have enunciated a straight forward approach for measuring

the design quality of Object-Oriented software systems by

object oriented quality metrics measurement in standardized

source code. Measured metrics for a software system are

scaled downed to standard unit so that measurement will have

a standard platform for all software systems disregarding of

their dissimilarity of size, complexity or design quality .Strong

correlation between metrics is found and almost linear

correlation persists in every couple of metrics. These

correlations between metrics encourage us to use their

percentile average values to formulate a straight forward

approach to assign a design quality rank for any software

systems. This work establishes that software metrics like

Cyclomatic Complexity (CC), Lack of cohesion methods

(LCOM), Weighted Method Per Class (WMC), Lines of codes

of methods (LOCM) play a definitive role in design quality of

Object Oriented Software.

REFERENCES

1 L. C. Briand, W. L. Melo, and J. Wust, “Assessing the

applicability of fault-proneness models across object-

oriented software projects", IEEE Transactions on Software

Engineering, vol. 28, no. 7, pp. 706-720, July 2002.

2 Shi Zhong, M. Khoshgoftaar, and Naeem Seliya, “Expert-

Based Software Measurement Data Analysis with

Clustering Techniques”, Accepted to IEEE Intelligent

Systems, Special Issue on Data & Information Cleaning &

Preprocessing, 2004.

3. Yuming Zhou and Hareton Leung, “Empirical Analysis of

Object-Oriented Design Metrics for Predicting High and

Low Severity Faults,” IEEE Trans. Software Eng., vol. 32,

no. 10, pp. 771-789, Oct. 2006.

4. W.J. Brown, R.C. Malveau, H.W. McCormick, III, and T.J.

Mowbray, “AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis”, John Wiley Press,

1998.

5. S.R. Chidamber, C.F. Kemerer,” A metrics suit for object

oriented design”, IEEE Trans. On Software eng., vol. 20,

no. 6, p.p. 476-493, June 1994.

6. Santonu Sarkar, Girish Maskeri Rama, and Avinash C.

Kak,“API-Based and Information-Theoretic Metrics for

Measuring the Quality of Software Modularization,” IEEE

Trans. Software Eng., vol. 33, no. 1, pp. 14-32, Jan. 2007.

7. G. Langelier H. Sahraoui P. Poulin; Visualization based

Analysis of Quality for Largescale Software Systems;

ASE’05, November 7–11, 2005.
8. Raghuraj Singh, Yogesh Singh, Onakar Singh: A

Hierarchical model for Design Reliability assessment of

Modular Design based software, ICFAI Journal of Systems

& Management, Vol. III, No. 2, PP 20-29, May 2005.

9. Fernando Brito e Abreu and Walcelio Melo: Evaluating the

Impact of Object OrientedDesign on Software Quality, 3rd

International S/W Metrics Symposium, March 1996,

Germany.

10. Dr. Kadhim M. Breesam, “Metrics for object oriented

design focusing on class inheritance metrics”, 2nd

International conference on dependency of computer

system IEEE, 2007.

11. Dr. B.R. sastry, M.V. Vijaya Saradhi, “Impact of software

metrics on object oriented software development life

cycle”, International Journal of Engineering Scienceand

technology, Vol 2(2), pg 67-76, 2010.

12. Amjan shaik, Dr, CRK Reddy, Dr. A. Damodaram,

“Statistical analysis for object oriented design software

security metrics”, International Journal of Engineering

Science & technology, vol 2(5), pg 1136-1142, 2010
13. Jagdish Bansiya and Carl G Devis: A Hierarchical Model

for Object Oriented Design Quality Assessment, IEEE

transactions of Software Engineering, Vol 28, No. 1,

January 2002.

14. K K Agarwal, Y Singh, Arvinder Kaur and Ruchika

Malhotra: Empirical study of Object Oriented Metrics,

Journal of Object Technology, Vol. 5, No. 8, Nov-Dec

2006.

130

15. W.J. Brown, R.C. Malveau, H.W. McCormick, III, and T.J.

Mowbray, “AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis”, John Wiley Press,

1998.

16. Md Abul Khaer, MMA Hashem, Md Raihan Masud: On

use of Design Patterns in Empirical Assessment of

Software Design Quality, Proceedings of the International

Conference on Computer & Communication Engineering

2008, May 13-15 Kuala Lumpur, Malaysia 2008.

