
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

389

Dynamic Private Small Cloud for Linux Thin Clients

Jahnavi G Reddy
1
, Shubhashree S

2
, Shruti Shetty

3
, Sanjeetha R

4

Dept. of Computer Science and Engineering

M S Ramaiah Institute of Technology

Bangalore, India
1
janu.g.reddy@gmail.com,

2
shubhashree.s@gmail.com,

3
shruti.shetty25@gmail.com,

4
gsanju.prakash@gmail.com

Abstract — Energy consumption for high performance

computing is enormous. This can be substantially reduced using
Cloud Computing which provides low cost, energy efficient and
ubiquitous computing. But Cloud Computing cannot work
efficiently with limited resources.

We aim to build a Private Small Cloud (PSC) that is based on
small clusters, virtualization and graphics processor which can
handle large amounts of data with low cost, high efficiency and
reliability using limited resources. Using Cloud Computing for
low power PC cluster architecture and low power client devices
can reduce energy consumption and carbon emission. Virtual
machine server run multiple operating systems simultaneously on
a single computer and supports multiple heterogeneous
applications running on a number of client devices. General
purpose graphics processing unit (GPGPU) makes use of parallel
processing and multithreading. The cloud is designed to work
with Linux thin clients using wired connection.

Keywords- private small-cloud computing; Ubuntu Enterprise

Server; linux-based embedded devices; JamVM virtual machine

I. INTRODUCTION

Recently, cloud computing has become a popular computing
paradigm in which virtualized and scalable resources are
provided as services over the Internet. However the running of
large scale computing and data centers generally requires a
large amount of energy. In fact, enormous energy is wasted
due to idle resources. Moreover, issues of security and system
flexibility arise while using a public cloud. These can be
solved by managing our own cloud network which is not only
advantageous for the above reasons but also reduces cost.

We propose to solve this, by setting up our own Private Small
Cloud (PSC) which is based on three concepts: small clusters,
virtualization and general graphics processor [1]. Cluster
computing is preferred over grid computing due to fault
tolerance, robustness, rapid recovery and high performance
computing.

Next, a virtual machine server is a service designed to run
multiple operating systems simultaneously on a single
computer and supports multiple heterogeneous applications
running on a number of client devices. A single machine
cannot fit for all the tasks at the same time, therefore the
virtual machine server is deployed to reduce power
consumption, save time, cost and improve execution.
Finally, the use of a general purpose graphics processing unit
(GPGPU) can be realized for stream processing rather than a

general processor. Stream processing is one of the paradigms
of compilation of a program and is related to SIMD computer
programming for which GPGPU has easier use of a limited
form of parallel processing and multithreading.

Walrus storage controller in conjunction with cloud controller
can be used to store large amounts of data. In many
applications, embedded devices often require huge computing
power and storage space, cloud computing services can be
used to achieve this goal. A web interface can be deployed at
the client side to use the cloud. The working of the private
cloud can be tested using a database application.

II. BACKGROUND

Deploying a cloud structure generally needs the following
softwares: Xen, OpenNebula, Eucalyptus, and Euca2ools. An
open source Ubuntu Enterprise Server with the option Ubuntu
Enterprise Cloud is utilized to build the private small-cloud.
The current Ubuntu Enterprise Cloud 10.04 includes Xen,
VMGL, Open Nebula, and Eucalyptus and other packages.
Through these we can focus on installing the back-end cluster
controllers and cloud controller in order to build a private
small-cloud.

Due to its low cost and ease of customization, Linux is often
used in embedded systems. Android—based on a modified
version of the Linux kernel—has become a major competitor
of Nokia's older Symbian OS, found in many smart phones.
Linux is used in embedded systems like mobile phones, PDAs,
set top boxes etc. Cell phones and PDAs running Linux on
open-source platforms became more common from 2007;
examples include the Nokia N810 and the Motorola ROKR
E8.

JamVM is an open source Java Virtual Machine (JVM)
developed to be extremely small compared with other virtual
machines (VMs) while conforming to the Java virtual machine
specification version 2 (blue book)[10]. JamVM can be
configured to use the GNU Classpath or the OpenJDK Java
class library and recent versions support object finalization,
Soft/Weak/Phantom References, the Java Native Interface
(JNI) and the Reflection API. The compacting garbage
collector can run either synchronously or asynchronously
within its own thread. JamVM currently supports the CPUs:
AMD64, ARM, i80486, MIPS, PowerPC and SPARC.The
OpenJDK compatible version of JamVM is supported by
IcedTea, and IcedTea packages of JamVM are included in

mailto:reddy@gmail.com
mailto:s@gmail.com
mailto:shetty25@gmail.com
mailto:prakash@gmail.com

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

390

both Debian and Ubuntu. This enables JamVM to be installed
as an alternative Java Virtual Machine to hotspot when using
OpenJDK. When using Ubuntu on ARM, JamVM is the WS3
or Walrus Storage controller provides a persistent simple
storage service using REST and SOAP APIs compatible with
S3 APIs. Some of the functions of Walrus are: storing the
machine images, storing snapshots, storing and serving files
using S3 API.

Xen is a virtual-machine monitor providing services that allow
multiple computer operating systems to execute on the same
computer hardware concurrently.The University of Cambridge
Computer Laboratory developed the first versions of Xen.
Since 2010, the Xen community develops and maintains Xen
as free software, licensed under the GNU General Public
License (GPLv2). In Xen systems the Xen hypervisor is the
lowest and most privileged software layer. This layer supports
one or more guest operating systems, scheduled on the
physical CPUs. The first guest operating system, called in Xen
terminology domain 0 (dom0) is executed automatically when
the hypervisor boots and receives special management
privileges and direct access to all physical hardware by
default. The system administrator can log into dom0 in order
to manage any additional guest operating systems, called user
domains (domU) in Xen terminology.

OpenNebula is an open-source cloud computing toolkit for
managing heterogeneous distributed data center infrastructures
[5]. The OpenNebula toolkit manages a data center's virtual
infrastructure to build private, public and hybrid IaaS
(Infrastructure as a Service) clouds. OpenNebula orchestrates
storage, network, virtualization, monitoring, and security
technologies to deploy multi-tier services (e.g. compute
clusters) as virtual machines on distributed infrastructures,
combining both data center resources and remote cloud
resources, according to allocation policies. OpenNebula is
used by a variety of organizations, including hosting
providers, telecom operators, IT services providers,
supercomputing centers, research labs, and international
research projects.

Eucalyptus is a software platform for the implementation of
private cloud computing on computer clusters [6]. There is an
open-core enterprise edition and an open-source edition.
Currently, it exports a user-facing interface that is compatible
with the Amazon EC2 and S3 services but the platform is
modularized so that it can support a set of different interfaces
simultaneously. The development of Eucalyptus software is
sponsored by Eucalyptus Systems, a venture-backed start-up.
Eucalyptus works with most currently available Linux
distributions including Ubuntu, Red Hat Enterprise Linux
(RHEL), CentOS, SUSE Linux Enterprise Server (SLES) and
Fedora. It can also host Microsoft Windows images. Similarly
Eucalyptus can use a variety of virtualization technologies
including VMware, Xen and KVM hypervisors to implement
the cloud abstractions it supports. Eucalyptus is an acronym
for “Elastic Utility Computing Architecture for Linking Your
Programs to Useful Systems”.

Euca2ools are command-line tools for interacting with Web
services that export a REST/Query-based API compatible with
Amazon EC2 and S3 services [3]. The tools can be used with
both Amazon's services and with installations of the
Eucalyptus open-source cloud-computing infrastructure. The
tools were inspired by command-line tools distributed by
Amazon (api-tools and ami-tools) and largely accept the same
options and environment variables. However, these tools were
implemented from scratch in Python, relying on the Boto
library and M2Crypto toolkit.

The components of the Private Small Cloud are as follows:

A. Virtual Machine (VM):

A single machine cannot fit in all the tasks at the same time,

therefore the virtual machine server is a service designed to

run multiple operating systems simultaneously on a single

computer and supports multiple heterogeneous applications

running on a number of client devices.

B. Node Controller (NC):

The NC (through the functionality of a hypervisor) controls

VM activities, including the execution, inspection and

termination of VM instances. Prior to installing a node

controller an ISO file booting system with English language

choice should be done as command line style is the input

mode for the node controller.

C. Cluster Controller (CC):

The CC controls the execution of virtual machines (VMs)

running on the nodes and manages the virtual networking

between VMs and external users. It manages all the clusters.

D. Storage Controller (SC):

The SC provides block level network storage that can be

dynamically attached by VMs.Walrus can be used to provide

this functionality.

E. Cloud Controller (CLC):

The CLC is responsible for exposing and managing the

underlying virtualized resources (machines, network and

storage) via user-facing APIs via Web interfaces. It interacts

with the cluster and storage controller.

III. METHOD

In order to deploy a minimum of cloud structure, at least two
dedicated systems are needed [2]. One will be used as a cloud
controller (clc), and contains the entire back-end cluster
controller (cc), storage server Walrus, and the storage
controller (sc). This host needs fast disks and a few fast
processors to match those disks. Another one is a node
controller (nc), used to perform many of the cloud entity.This
host takes a lot of capacity with Virtualization Technologies
(VT) of the CPU, a large number of CPU computing power,

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

391

large memory and fast disk. Building the system in the
following steps:

A. Installing virtual machine

In this project we adopt Ubuntu Operating system as the
virtual machine as it supports the Ubuntu Enterprise Cloud.

B. Deploying cloud computing architecture

Deploying cloud structure will generally need the softwares:
Xen, OpenNebula, Eucalyptus, and Euca2ools. Since system
installation needs many steps, manipulation often encounters
some errors and the configuration is not easy. This project
employs an open source, Ubuntu Enterprise Server Edition,
because this version of the Ubuntu has included all of the
above packages that are used to deploy cloud structure rapidly
and easily.

C. Installing node controller

After the installation of the cloud controller, the node
controller is installed using the same ISO booting file as the
cloud controller.

D. Setting cloud controller

Back to the cloud controller , commands are executed to find
the node controller and examining a link to node controller
that is created earlier.

E. Setting cloud user through web interface

Before the user at client side uses the cloud, the client is
required to do some of the settings in cloud controller through
a web interface called the Login Management Interface: The
default account is admin and password admin.

F. Deploying application

Once the Private Small cloud is setup. Webmin is installed on
the cloud controller and an RTO database application is
deployed. This application can be accessed by all the nodes
using the ip address of the cloud controller.

IV. CONCLUSION

We have been able to setup a private small cloud on our own.
By building a private small cloud we have observed that it can
work efficiently with limited resources. The RTO application
deployed on this cloud works faster specially when many
users try to access it at the same time.

The future work can include many enhancements to the
existing system. The scalability of the network could be
increased by building a more complex Private Cloud with
more nodes depending on the size of an organization. There
could be multiple cluster controllers within the cloud, and
multiple node controllers reporting to each cluster controller.

The system developed currently deploys software applications
on the cloud. The existing model could be extended to provide
Infrastructure as a service and Platform as a service as well.

Another area which could be enhanced is the accessibility of
the Private Cloud on wireless mobile devices via 3G network
connections. This could be done by utilizing JamVM, GTK +
DirectFB, GTK + X11, QT / Embedded.

Figure 1. Cloud controller (CLC) architecture.

Figure 2. Node controller (nc) structure.

Figure 3: A complete structure of CLC+NC private small cloud computing

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

392

Figure 4: RTO application Deployed on the cloud

ACKNOWLEDGMENT

We are grateful to M S Ramaiah Institute of Technology for
providing us with all the facilities needed to work on this
project. Further, we wish to express our sincere gratitude to
our Head of Department,for technically equipping us to
successfully complete this project. We take great pleasure in
expressing our heartfelt gratitude to all our teachers , for
imparting her highly valuable guidance at every stage of the
project. We would also like to thank all the teaching and non-
teaching staff

for their kind co-operation, support and guidance. Last but not
least, we wish to avail this opportunity, to thank all our family
and friends who have supported us through everything.

REFERENCES

[1] Bao Rong Chang, Hsiu Fen Tsai, Chien-Feng Huang and His-
Chung Huang, Private Small-Cloud Computing in Connection with
Linux Thin Client, 2010

[2] Ubuntudocumentation
https://help.ubuntu.com/community/UEC/CDInstall

[3] Euca2oolsUserGuide,2010
http://open.eucalyptus.com/wiki/Euca2oolsGuide_v1.1

[4] Ubuntu Forums

[5] OpenNebula, 2010. http://www.opennebula.org/

[6] Eucalyptus, 2010. http://open.eucalyptus.com/

[7] Welcome to Apache Hadoop, 2010. http://hadoop.apache.org/

[8] General-Purpose Computation on Graphics Processing Units, 2010.
http://gpgpu.org/

[9] Java2Platform,MicroEdition(J2ME),2010.
http://www.java.com/zh_TW/download/faq/whatis_j2me.xml

[10] JamVM--AcompactJavaVirtualMachine,

2010.http://jamvm.sourceforge.net/

[11] GNU Classpath , GNU Classpath, Essential Libraries for Java, in2010.
http://www.gnu.org/software/classpath/

[12] Ubuntu Enterprise Server , 2010.http://docs.sun.com/app/docs/doc/821 -
1045/ggfrh?l=zh_TW&a=view

http://open.eucalyptus.com/wiki/Euca2oolsGuide_v1.1
http://open.eucalyptus.com/wiki/Euca2oolsGuide_v1.1
http://www.opennebula.org/
http://open.eucalyptus.com/
http://hadoop.apache.org/
http://gpgpu.org/
http://gpgpu.org/
http://www.java.com/zh_TW/download/faq/whatis_j2me.xml
http://www.java.com/zh_TW/download/faq/whatis_j2me.xml
http://jamvm.sourceforge.net/
http://www.gnu.org/software/classpath/
http://docs.sun.com/app/docs/doc/821-

