
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

340

Phrase Matching in (s,c) Dense Code Compressed Files

Jagadish Dharanikota

Department of Computer Science & Engineering

Motilal Nehru National Institute of Technology

Allahabad, India.

E-mail: jagadishcse520@gmail.com

Suneeta Agarwal

Department of Computer Science & Engineering

Motilal Nehru National Institute of Technology

Allahabad, India.

E-mail: suneeta@mnnit.ac.in

Abstract— Due to increase in the data size and limited

network bandwidths there is need of compressing the data

files. This compression technique saves the memory and data

can be transferred faster over the network. Pattern matching

on compressed files is one of the requirements for Information

retrieval applications. Files compressed using (s,c) dense code

compression helps significantly to reduce the time for

searching as it avoids the decompression of the compressed file

for finding the pattern.

In this paper we propose an approach for phrase

matching in the compressed files by modifying standard string

matching algorithms like horspool and Sunday algorithm. This

phrase matching can be used by search engines in relevant

document retrieval for the given query. Pattern matching on

(s, c) dense code compressed files had lots of advantages along

with better compression ratios when compared to other

standard compression algorithms. Searching the text on the

compressed files is up to 8 times faster when compared to

uncompressed file [1]. Here we propose a new searching

technique for phrase searching in (s,c) dense code file. We

apply frequency based codeword matching searching using

standard algorithms with proper modification in them. We

show that our proposed searching technique is faster than

straight forward techniques.

Keywords- Frequency based codeword searching; Phrase

Matching; (s,c) Dense Code.

I. INTRODUCTION

The Problem pattern matching in compressed files can be

defined as: given a pattern P and the text T where the

pattern should be found in compressed text C which is

obtained by some compression algorithm (here in this paper

(s,c) dense codes), finding all the occurrence of P in C.

The naïve approach to doing this pattern matching is to

decompress the compressed text C and finding all the

occurrences of the pattern P in the decompressed text. This

is not an efficient solution due to unnecessary processing

time in decompressing the text to find the pattern. The CPU

processing speed is increasing fast when compared to I/O

seek time. In order to reduce this I/O seek time a mechanism

for finding the pattern in compressed file should be there. In

this paper we are performing the phrase matching on (s,c)

Dense Code compressed files. (s,c) Dense Code gives a

better compression ratio along with direct Barry-Moore type

search on the compressed text [2]. In this paper we discuss

the different byte oriented compression techniques in

section 2. In the section 3 we mentioned pattern matching in

compressed files. In section 4 we provide our approach to

find the phrase in the compressed files using pattern

matching algorithms with modification in them and had

done an analysis. Finally in section 5 we had shown our

experimental results and proved that our proposed technique

is faster than the straight forward pattern matching.

II. BYTE ORIENTED COMPRESSION

The Huffman coding is a bit oriented coding applied to

the characters. It gives the optimal prefix codes. Prefix

codes are codes that ensure one code is not a prefix of the

other. The compression is done taking characters as source

symbols and assigning bit codes to characters [3]. The

decompression is slower and searching is a bit difficult on

bit oriented coding. To overcome these semistatic statistical

methods came into existence taking words as the source

symbols for compression [4]. The use of byte codes taking

words as the source symbols give better compression ratio

[5].

The Plain Huffman codes are nothing but Huffman with

source symbols as words and targets symbols are bytes.

Tagged Huffman codes are one which uses the highest bit of

each byte to notify the start of each codeword. So in a byte

only 7 bits are useful for codeword and 1 flag bit is used to

notify the starting of the codeword. The bit that signals

make these codes a prefix code.

Brisaboa et al. made some modification to the tagged

Huffman coding and named them as end tagged dense

codes. In end tagged dense codes the signal bit is used to

represent the end of the codeword instead of starting. This

bit ensures that the codeword formed is prefix code words.

So codes formed here are static which use only 7 bits.

Brisaboa et al. realized that instead of making these codes

static fixed to 128 the stoppers and continuers can be

dynamic and can be decided based on the probability

occurrences of the source symbols. These codes are named

as (s,c) dense codes [6]. In this coding mechanism the

source symbols are assigned codeword in such a manner

that the stopper is followed by continuer. The source

symbols (words here) are sorted out based on their

frequencies and the words with more frequency are assigned

to smaller byte codeword and less frequent words are

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

341

Valid Match

Byte Value before match < C
False Match

assigned to larger byte codeword. Let b be the number of

bits used for codeword then s+c = 2
b
. Hence (2

b-1
, 2

b-1
) are

nothing but end tagged dense codes.

 The (s,c) values vary with the size of the

vocabulary and word frequency. The compression ratio of

the (s,c) dense codes depends on the (s,c) values. The

optimal (s,c) values can be found using the algorithm given

in [5].

The encoding process of (s,c) dense codes is as follows

 Words are sorted out in the descending order of

their frequencies.

 The first s frequent words in the vocabulary are

assigned with one byte codewords starting from c

to s+c-1.

 Next s to s+sc-1 words in the vocabulary are

assigned with two byte codewords. First byte in the

range (0, c-1) and the second byte in the range (c to

s+c-1).

 Similarly follows the three byte codewords.

These byte oriented codeword assignments are easier to

assign and there is no need to store the codeword

corresponding to the word. These codewords are can be

generated dynamically using the index of the word. The

encoding and decoding are faster with the byte oriented

coding [6]. The most important benefit with bytecodes is

they provide direct search on the compressed files. The

Boyer-more type of search can be easily performed which

skips certain byte codes while searching.

III. RELATED WORK

The pattern matching in compressed files is one of the

key benefits of byte oriented compressed schemes. In these

the byte compressed files the Boyer-Moore type search can

be applied direct with modification in them [2]. The change

that should be added is to identify the false match of a code

word in (s,c) dense codes. When a match is found the

previous codeword of the match should be inspected in

order to check it is suffix of other codeword or exact

codeword match. If previous byte of the match is checked

and if it is a continuer then it is a false match. If it is a

stopper then the match is correct match for the given

pattern.

While matching the pattern we should ensure that the

following situations don‟t occur:

i) Given pattern P matches the prefix of some other

codeword.

ii) Pattern P matches the suffix of some other

codeword.

iii) Pattern P is formed by the combination of two

codewords.

In prefix codewords case (i) doesn‟t occur. But in plain

Huffman there is a chance of a case (ii) and (iii) to occur. In

(s,c) dense code compressed file case (iii) doesn‟t occur but

there is a chance of a case (ii) to occur.

Consider (s,c) dense codes byte encoding scheme with b=8

bits and (s,c) = (160,96).Let us consider some pattern P and

Compressed text C. The process of matching the pattern

over the compressed text is shown in Fig 1.

P: 00000001 11100110

C: 00000100 11110000 00000000 00000001 11100110

00000000 11110001 00000001 11100110

Figure 1. Pattern matching in compressed file.

IV. PROPOSED METHOD

A. Phrase Matching in Compressed File

Phrase matching is important in an information retrieval

system to give the related results. This matching should be

efficient in order to give better results in minimum time.

Matching the given phrase in the compressed file is one of

the challenges. Semi static codes explore this benefit of

direct matching in the compressed files. Due to its word

based byte encoding scheme it‟s easy to make a direct

search of any pattern, substring or phrase in the compressed

text.

Phrase matching in (s,c) dense code compressed files can be

performed in two ways.

i) Straight forward codeword searching.

ii) Frequency based codeword searching.

i) Straight forward codeword searching

In the straight forward method the codeword for the

phrase is to be framed as shown in Fig 2.

After obtaining the codeword of the phrase it is searched

using some conventional pattern matching algorithm. Using

this conventional pattern matching algorithm like Horspool,

Sunday for codewords is same as for character but with

proper modification is done to fit to byte codes.

ii) Frequency based codeword searching

False Match

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

342

In frequency based codeword searching the codeword

for the phrase is to be framed as shown in Fig 2. After

getting the codeword of the phrase they are maintained in

low to high frequency order. In the searching algorithm

codeword of the phrase is searched based on the frequency.

First the codeword with less frequency are searched within

the pattern aligned with the coded text window. If the

codeword is matched with its corresponding position in the

coded text window we will match the next lower frequent

codeword. If all the codewords of the phrase are matched

with the coded text window then the phrase is occurring in

the file. All the occurrences of the phrase are reported.

Figure 2. Flow chart for codeword searching

B. Analysis

We analyzed that considering the frequency of the

codewords rather than straight forward searching reduces

the comparisons. In frequency based searching because we

are searching in the aligned window based on word

frequency the probability of the codeword matching is less

when compared to left to right or right to left comparison of

the window. We can terminate the pattern aligned window

comparison loop immediately after a miss match and can

decide the skip distance. Hence the number of comparisons

in the aligned window is reduced. So the overall

comparisons in the frequency based searching are less than

straight forward searching. This reduces the search time in

frequency based method than straight forward method.

When the number of phrases to be searched is less then

there will not be much difference in the performance of both

the searching techniques. If the number of phrases is more,

then frequency based searching gives better results.

In both the methods the phrase should not be too small

or too big to obtain the maximum skips. If the phrase is too

small then the number of skips will be less. Even if the

phrase is too big then the codeword of one word may be the

suffix of the other codeword reducing the skip distance.

The best case occurs when no codeword of the word in

the phrase is a suffix of the other codeword. The first match

of the codeword doesn‟t occur at all in the pattern also gives

best case. There is at least one word in the phrase whose

frequency is very less to make the loop terminate

immediately from the matching window. These cases give

the maximum number of skips with few comparisons. The

worst case occurs when codewords of the words in the

phrase are suffix of other codewords and the codeword in

text appears in the pattern. This reduces skip distance of the

pattern.
Let the length of the encoded text be „n‟ and „m‟ be the

length of the codeword of the phrase. Applying the naïve
pattern matching algorithm for the given phrase takes O(mn)
search time complexity and shifts the window exactly by 1
position.

Straight forward horspool algorithm takes O(m+σ) time
for a preprocessing stage where σ is the space required to
store the bad character shift array. It takes O(σ) space
complexity and O(mn) search time complexity [7]. In case of
frequency based horspool algorithm the space complexity is
O(σ +α) where α is the space required to store the indexes of
the codewords of the phrase in their frequency order.

The Straight forward Sunday algorithm takes O(m+σ)
time for a preprocessing stage where σ is the space required
to store the bad character shift array. It takes O(σ) space
complexity and O(mn) search time complexity [8]. In case of
frequency based Sunday algorithm the space complexity is
O(σ +α) where α is the space required to store the indexes of
the codewords of the phrase in their frequency order. The
time complexity remains same as the straight forward
approach. A Sunday algorithm looks at the codeword next to
the encoded text window as this is the codeword to be
compared next so it gives bit more shifts [8].

Parse the given phrase into words.

Find the hash of the words and find them

in hash table.

If all the words
of phrase exist

in the hash table

Frame the codeword of the phase based

on the index.

Phrase doesn‟t exist in

the file.

Apply the relevant codeword searching

algorithm.

Display the phrase locations.

Stop

Load the Hash Table with Vocabulary.

Start

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

343

V. EXPERIMENTAL RESULTS

In this section we present the experimental results on

phrase searching in (s,c) dense code compressed files. We

used some text collection from the Calgary Corpus
1

(CALGARY) to perform compression and phrase matching

in them. We compressed the files using (s,c)-Dense

Code(SCDC) with bytes as the target symbols (b=8). We

performed searching for phrase on compressed files using

naïve pattern matching algorithm, straight forward horspool

algorithm, frequency based horspool algorithm, straight

forward sunday algorithm and frequency based sunday

algorithm with proper modification on them. The difference

between the performances of straight forward horspool and

frequency based horspool are significantly less when

compared to the difference in performance between straight

forward Sunday algorithm and frequency based Sunday

algorithm. We performed the search for different number of

phrases and presented the results.

Figure 3. Comparison of time for phrase searching applying different

algorithms.

VI. CONCLUSION

We have presented an approach for phrase matching in

(s,c) dense code compressed files. The approach presented

in this paper is using the statistics of the given phrase and

based on that the search is performed. So our approach is

having an advantage of reduced comparisons and faster

search when compared to the straight forward search. We

have presented the space and time complexity requirements

of the proposed approach. From the experimental results it

can be seen that our proposed “Frequency based Sunday

algorithm” performs better than other algorithms.

Based on our analysis we have given the best and worst

cases in phrase matching for a given phrase. We had shown

the as the number of phrases increase, the frequency based

searching gives better results than straight forward

searching.

REFERENCES

[1] Turpin, A. and Moffat, A., “Fast file search using text compression”,

Proceedings of the 20th Australian Computer Science Conference, pp.
1–8, 1997.

[2] Brisaboa, N., Farina, A., Navarro, G., and Parama, J.,”Lightweight
natural language text compression”, Infor. Retriev. 10, 1, pp.1-33,
2007.

[3] Huffman, D. A., “A method for the construction of minimum
redundancy codes”, Proceedings of the Institute of Electronics and
Radio Engineers (IRE) 40(9), pp.1098–1101, 1952.

[4] Moffat, A.,”Word-based text compression”, Software - Practice and
Experience 19(2), pp.185–198,1989.

[5] E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, “Fast
and flexible word searching on compressed text”, ACM Transactions
on Information Systems, 18(2),pp.113–139, 2000.

[6] Brisaboa, N., Fari˜na, A., Navarro, G. and Esteller, M., “(s,c)-dense
coding: An optimized compression code for natural language text
databases”, Proceedings of the 10th International Symposium on
String Processing and Information Retrieval (SPIRE‟03), LNCS
2857, Springer-Verlag, pp. 122–136, 2003a.

[7] Horspool, R. N., “Practical fast searching in strings”, Software
Practice and Experience 10(6), pp.501–506, 1980.

[8] SUNDAY D.M., A very fast substring search algorithm,
Communications of the ACM. 33(8), pp.132-142, 1990.

1 ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

