
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

301

ACompleteTool-

ChainforDevelopingandTestingWSNApplicationswit

h FLEXOR

KaminiGarg†,Anna Förster†,DanielePuccinelli†,TizianoLeidiffi andSilvia Giordano†
†NetworkingLaboratory,ISIN-DTI,UniversityofAppliedSciencesofSouthernSwitzerland

ffiICIMSI,DTI,UniversityofAppliedSciencesofSouthernSwitzerland

{kamini.garg,anna.foerster,daniele.puccinelli,tiziano.leidi, silvia.giordano}@supsi.ch

Abstract—In this paper, we present the complete tool-chainfor

FLEXOR, a sustainable and platform independent

softwarearchitecture that is optimized to support the

implementation,rapid prototyping, evaluation, and testing of

wireless sensornetwork applications.

Keywords—Wireless SensorNetworks, Architecture, Tool

 I.INTRODUCTION

The proper definition of efficient software architectures for

Wireless Sensor Networks (WSNs) is instrumental to code

reusability across different platforms, rapid prototyping,

hassle-free deployment, and the overall user friendliness of the

development process. Many key challenges of WSNs have

already been addressed with various degrees of success, but a

significant number of valid solutions have not had the broad

impact they deserve. To mitigate this problem, we advocate

for a sustainable, modular, and flexible software architecture

that intrinsically promotes cross-platform code reuse and fast

prototyping and enables the remote control and selective

activation of specific modules on individual nodes at run time.

In this paper we present the complete tool-chain for FLEXOR,

a platform-independent software architecture for the rapid

prototyping, development and testing of WSNs.The FLEXOR

software architecture and its tool-chain was developed

according to the following requirements:

 Standard programming language

 Platform independence

 High level of modularization

 Remote function invocation support

 Remote component exchange without reboot

 Graphical support for programming, debugging

and deployment

The remainder of this paper is organized as follows: Section II

presents the overall structure and short overview ofFLEXOR.

Section III presents the complete development anddeployment

tool chain for FLEXOR, consisting of visual editors,

codegenerators, and the run-time FLEXOR

Commander.Section IV puts our work in context and

compares it to otherrelevant efforts in the community. Finally,

Section V discussesthe potential of FLEXOR and its possible

applications tovarious challenges in WSNs. Finally Section VI

concludes thepaper.

II. FLEXOR SYSTEM ARCHITECTURE

ThemaingoaloftheFLEXORsoftwarearchitectureis

tosupportmodularization,remotecallbackinvocation,remote

nodemanagement,andplatformindependence. Theoverall

structureof FLEXORispresentedinFigure1.Themain

componentsofFLEXORaredescribedasfollows:

Fig.1.FLEXORoverallstructure.

A. FLEXOR Interface

FLEXORinterfaceisthemaincomponent thatenablesthe

platform-independentimplementationofdifferentmodulesand

alignsdifferentoperatingsystems,platforms, andevennet- work

simulatorstothesameWSN-specificinterface.Currently

wehaveimplementedthis FLEXORinterfacefortheTinyOS

operatingsystemandtheOMNeT++Simulator.

Fig.2.FLEXOR b asi c modu le a rch etyp e .

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

302

B. FLEXOR Module

A FLEXOR moduleis the basicbuilding blockfor all

applicationsdevelopedin FLEXOR.Figure2presents their

basicminimalstructure. Thebasicarchetype ofaFLEXOR

moduleconsistsof7interfacefunctions: init,start,stop,

fromUp,fromDown,toUp,toDown.

C. FLEXOR Core

FLEXORCoreconsistsofCallback Manager,PacketPool

andModuleManager.ThePacketPoolisacentralcompo- nentin

FLEXOR andservesseveralgoals.Itenablesfull

controloverthenumberofmessagescurrentlyprocessedin the

system, thus preventing memory overflows.The Call-

backManager takescareofremotefunction callmechanism.

TheModuleManageristhemostimportantcomponent of

FLEXOR.It is theonlycomponentinFLEXORthatis aware of

the modulescurrentlyloadedintothe systemand their

organization.Itcanalsochangethisorganizationatrun-time.

D. FLEXOR Specifications and Images

Specifications consistofa setofmodulesandtheirintercon-

nectionsintoastack.Thestackcanbetraditional andlinear,

butalsotwo-dimensional,depending ontheuserrequirements

andonthemodulearchetypes used.Severalspecificationscan co-

existonthesamenodeatrun-time, butonlyonesingle specification

canbeactiveatanygiventime.Asetofco- existing

specificationsresiding together in the memory of

asinglenodeiscalledanimage.Examplesoftwoimages

arepresentedinFigure3.Themodulemanagertakescare of

exchangingspecificationsonruntimeasaconsequence of

aninternal or external command(callback). Forfurther

informationregarding FLEXORarchitecture, pleasereferto [5].

Fig.3 .FLEXORsp ec i f i ca t i on and image examp les .

III. FLEXOR TOOL-CHAIN

The FLEXOR development environment consists of de-

velopment tools for prototyping, refining, and customizing

sensor network applications based on the FLEXOR soft-

ware architecture. The FLEXOR environment is integrated

into the Eclipse development platform [www.eclipse.org] and

combines a visual domain-specific language (DSL)[7] with C

source code generators and functionalities to assist the design

and implementation of sensor network applications. FLEXOR

is based on the Eclipse infrastructure for modeling and

code generation [www.eclipse.org/modeling], and is compati-

ble with all the Eclipse plug-ins for C and C++ development

[www.eclipse.org/cdt]. Furthermore, we provide a

FLEXORCommander that is able to send callback commands

to any node in the network and to receive debugging

information from serially connected nodes.

The FLEXOR development environment is based

onmodel-driven generative programming techniques [10].

Devel- opers may design applications using a visual abstract

language and generate the implementation code of the

corresponding application directly from the designed software

architecture. Developers may then program specific parts of

the application, like processing algorithms, directly in C. By

means of round- trip development support, it is then possible

to extract hand- made code from the generated code and

integrate snippets in the abstract design of the application.

Therefore, further code generations will automatically produce

the complete code of the application. Coverage of the whole

development process, from application design to its refinement

and optimization, is therefore supported by the tools, in an

integrated and automated way (see figure 4).

Fig.4 .Development Process.

The FLEXOR development environment is composed of

(see also figure 5):

• An abstraction (the model): it provides the high-level

architecture of FLEXOR elements (e.g. modules, specs and

images) in an editable form. It further provides rules and

constraints to combine these elements. Model elements are

instantiated during development and further used to design

the structure and behavior of developed applications.

• Code generators: they transform the abstract information

contained in the model instances into C source code. The

generated code implements the structure and behavior of

designed applications.

• Visual editors: they allow designers to easily instantiate,

access, and modify the abstract model elements. Jointly with

the model, the editors provide the visual Domain- Specific

Language (DSL) that represents the centerpiece of the

FLEXOR development environment.

• Support for model refactoring: it enables the modification

of the model instances without modifying the behavior of the

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

303

designed applications and streamlines the whole development

process.

Source code generation is used in FLEXOR to streamline the

development process and reduce the risk of structural bugs in

applications. Production of the source code and integration

with the FLEXOR runtime is automated, consequently re-

ducing the development complexity. Furthermore, the source

code of modules and specs is produced systematically to

avoid inconsistencies and programming errors. Before

generation, the description of each module and specification

is validated against the presence of possible design mistakes.

This functionality further increases the robustness of the

developed applications.

Fig.5 .Structure of the FLEXOR environment.

A. FLEXOR abstract model

The FLEXOR abstract model features the following main

model elements (see also Section II):

 Module: it provides the information describing the

external parts of a module. The module editor

enables the addition of input and output access points that

the module uses to communicate with the other

modules. Any number of inputs and outputs may be

added. To ease the design of modules, it is possible to

specify an FLEXOR module, whose properties are reused

and may be extended by the module. FLEXOR types are a

light-weight form of programming inheritance, enabled

through encapsulation of STRUCTS that allows reuse and

customization of common module designs.

 Module Implementation: it contains the abstract informa-

tion of the internal parts of a module. For each module it

is possible to specify a module implementation, which

encapsulates all the source code snippets for functions

associated with input and output access points, for ini-

tialization of functions, module callbacks and payloads.

 Specification: it allows the combination of different mod-

ules into module stacks, by connecting input and output

gates.

 Image: it provides a way to aggregate more than one

specification into an application, which may be deployed

on sensor nodes.

Further model elements are available in the FLEXOR abstract

model for payloads and callbacks. They may be used to

specify code identifiers and special purpose state variables.

For each model element a visual editor or a form editor is

availablein the FLEXOR development environment. A visual

editor is provided for modules and specifications (see figure

5). A form editor is provided for module implementations and

images, which mostly store information in the form of text

or as references to other model elements.

Fig.6 .FLEXOR graphical user interface.

B. Code generators and generated code

FLEXORsourcecodegenerators queryFLEXORabstract

modelelementsandproduceCsourcefiles. Generatorsper-

formatransformation fromanabstractDSLtoastructured

programminglanguage,bycustomizing theFLEXORsoft-

warearchitectureforeachspecific applicationdesignedwith

theFLEXORdevelopmentenvironment.Thefollowingcode

isgenerated:

 Source files are generated for each module and

associated module implementation, which defines a C

STRUCT containing all the internal state variables of

the module and pointer to functions for input and output

gates used for inter-module communication.

Thegenerated source files further contain initialization

functions used to set default values of the internal state

and to properly install the required function pointers.

 For each specification, a source file with a C STRUCT

containing the STRUCTS of all modules used in the

specification is generated. Initialization functions that

allow different modules to communicate are also

available. Such functions are used to properly install the

involved function pointers on connected modules.

 For each image a source file with a C STRUCT

containing the STRUCTS of all the required

specifications is generated. Furthermore, source code to

initialize and configure the generated application is

produced.

Generated source code files extend and specialize the

basicfunctionality provided by the FLEXOR core.

Furthermore, all needed components (modules,

specifications, payloads, callbacks) are included into the

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

304

system to be compiled au- tomatically, thus increasing further

the user-friendliness of FLEXOR.

Fig.7 . FLEXOR commander enables the end user to interact with

any node in the deployed network.

C. FLEXOR Commander

As a final component of our FLEXOR tool-chain we

present the FLEXOR interaction server, see Figure7. This

GUI-supported tool enables the end user of the sensornet

deployment to communicate to the nodes in the network via

callbacks. Here, the user can send FLEXOR packets via serial

port to one or more serially connected nodes, which then

forward the callback to its final destination. The server also

displays debugging information from serially connected nodes

and can flash them with new code.

Fig. 8 . Screenshot of FLEXOR on OMNET++ Simulator.

D. FLEXOR on OMNET++ Simulator

In order to validate and verify the WSN applications, we
have also ported FLEXOR on OMNET++ platform. Porting
FLEXOR on OMNET++ platform helps the developers to
debug their applications before real deployment. Therefore
after validation and error correction of a WSN application, the
code is linked to a real hardware platform such as TinyOS that
is already implemented for FLEXOR. Figure 8 depicts the
sample working of FLEXOR on OMNET++ platform.

IV. RELATED WORKS

In this section, we contextualize FLEXOR with respect to
other related efforts in the WSN community. In essence,
FLEXOR combines the best practices and ideas into a single
architecture at the price of a low overhead.

A. Software architectures

The importance of a sustainable WSN architecture is often

emphasized in the literature [3]. Merlin et al. [9] have recently

identified a set of properties that need to be supported by

WSN software architectures: modularity, universality, event

notification, service support, and information propagation.

In terms of modularity, universality, and flexibility, X-Lisa,

SNA, Chameleon, and FLEXOR have very similar properties,

even if the details are different. However, FLEXOR offers the

most flexibility, as it allows for any number and order of

modules in its stack and even for two-dimensional stacks.

Chameleon’s [4] architecture is very modular due to its use of

Rime, a lightweight layered communication stack for sensor

networks that implements different communication primitives

(e.g. over 802.15.4, IP, etc.), but it fails to enforce any

modularization at the application level. FLEXOR, on the

other hand, enforces modularization at all levels and imple-

ments services and functions only at the medium access layer

(one-hop unreliable broadcast) along with platform-abstraction

functionalities.

B. Virtual machines, code distributions and remote control
Traditional virtual machines like Darjeeling [1] or Mate [8]

have different goals, as they do not aim to provide a
sustainable architecture for WSNs. Although their main goal is
the re- programming of motes after deployment, they only
enable the full exchange of the complete code at a node, as
opposed to partial exchanges. However, they do not enable
modulariza- tion, re-usability of code, or very low-overhead
runtime soft- ware management. Additionally, they do not
enable software management from inside the network: e.g., a
node may not drive its own software components or the ones
of its neighbors.

C. Graphical user interfaces and development enviornments

Various languages and modeling environments have been also

proposed for specific operating systems, mainly for TinyOS.

DSN [2], a declarative language for WSNs, or the Gratis [11]:

modeling environment, are such examples. How- ever, while

usually offering a higher level of abstraction and a more user-

friendly implementation environment, they are not targeted

towards code reuse, modularization or software component

management.

V. THE POTENTIAL OF FLEXOR

FLEXOR can be used in many different applications and

deployments. We have already applied FLEXOR to the im-

plementation of various link layer and routing protocols, to the

collection and management of link level statistics from

infrastructure-less testbeds, and to the management of mobile

nodes in WSN testbeds. In the next paragraphs, we briefly

describe these implementations and also sketch some other

advanced applications and features of FLEXOR.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

305

Mobile testbed nodes: Managing mobility in testbeds and

deployments is a major challenge, as nodes typically rely on a

wired backchannel to receive new software, log data, etc. With

FLEXOR, these features can be taken over by the callback

invocation and the run-time management of modules, as

described in Section II.

Link level traces: Link level traces represent an important

tool to boost the realism of simulation. It is critical to be able

to collect such traces not only from traditional backchannel-

based testbeds, such as MoteLab [13], but in any

environment, including outdoors. FLEXOR simplifies this task

by making it possible to easily send commands to the nodes,

change their behavior, and even collect the traces at a

centralized sink point without the use of a backchannel.

Evaluation of communication protocols and services:

Another typical task for WSN developers is to protocol or

service evaluation and benchmarking. Typically, protocols are

loaded and tested in a sequence. FLEXOR simplifies this task,

especially in a real-world deployment where backchannels are

not available. Callback invocation is used to easily exchange

protocols without affecting the state of the other protocols.

Fairness and visibility: Fairness is a major challengewhen

several protocols co-exist on the same node [6]. Pay- loads

coming from different modules are packed into the same

packet, thus minimizing the overall network traffic. The

extreme modularity of FLEXOR allows for better visibility of

the individual modules [12], as individual modules can be

clearly separated and their internal state and processes can be

logged.

Software rejuvenation:FLEXOR enables the long-

termmanagement of software modules, known as software

reju- venation [14]. Software rejuvenation can be easily

achieved with FLEXOR by using the module interface and its

main functions. Instead of rebooting a node and loosing its

complete state, all of the FLEXOR modules can be re-started

at any time and thus achieve rejuvenation of the existing state

or a different secure specification can be loaded to backup the

node state.

Local and remote debugging: FLEXOR can also beused

together with any platform-dependent and independent

debuggers, code inspections, and visualization mechanisms,

since it is entirely C-based. As discussed before, we also have

our FLEXOR Commander to do such a task.

Cross-layer support:FLEXOR allows a great deal offlexibility

in the definition and use of its module stack, as it enables

two-dimensional stacks as well as cross-layer communication.

This can be achieved in two different ways: adding new

inputs and outputs to the modules to connect non-

neighboring modules, and event notification, enabled via

callback invocation. This is a very important feature for

FLEXOR, as many WSN optimization techniques rely on

cross-layer communication and control.

VI. CONCLUSION

We have presented the design and complete tool-chain
ofFLEXOR, a modular and flexible software architecture
forthe rapid prototyping of WSNs. FLEXOR lowers the
barriers to entry into the traditionally challenging WSN

development process by offering a platform-independent
software archi- tecture as well as a user-friendly programming
environment and toolchain. FLEXOR represents an orthogonal
effort with widely used WSN operating systems such as
TinyOS and Contiki. FLEXOR can also be viewed as a
framework for the integration of advanced debugging
techniques such as passive in-field inspection of WSNs.
FLEXOR has the potential to streamline WSN development
by encouraging code reuse. As part of our follow-up work, we
plan to implement a large number of components to enrich
FLEXOR’s basic set of modules.

REFERENCES

[1] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich

vm for the resource poor. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, SenSys’09, pages 169–182,
Berkeley, California, 2009. ACM.

[2] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker,
and I. Stoica. The design and implementation of a declarative sensor
network system. In Proceedings of the 5th international conference on
Embedded networked sensor systems, SenSys ’07, pages 175–188,
Sydney, Australia, 2007. ACM.

[3] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S.
Shenker, I. Stoica, G. Tolle, and J. Zhao.Towards a sensor network
architecture: lowering the waistline. In Proceedings of the 10th
conference on Hot Topics in Operating Systems - Volume 10, pages 24–
24, Santa Fe, NM, 2005.

[4] A. Dunkels, F. O¨ sterlind, and Z. He. An adaptive communication
architecture for wireless sensor networks.In Proceedings of the5th
international conference on Embedded networked sensor
systems(SenSys), pages 335–349, New York, NY, USA, 2007. ACM.

[5] A. Förster, K. Garg, D. Puccinelli, and S. Giordano. Flexor: User
friendly wireless sensor network development and deployment. In
Proceedings of the 13th IEEEInternational Symposium on a World of
Wireless, Mobile and Multimedia Networks, San Francisco, CA, USA,
2012.

[6] J. Il Choi, M. Kazandjieva, M. Jain, and P. Levis. The case for a network
protocol isolation layer. In Proceedings of the 6th ACM conference on
Embedded network sensor systems (SenSys), Berkeley, CA, USA, 2009.

[7] I. Kurtev, J. Be´zivin, F. Jouault, and P. Valduriez. Model-based dsl
frameworks. In Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications,
OOPSLA ’06, pages 602–616, Portland, Oregon, USA, 2006. ACM.

[8] P. Levis and D. E. Culler. Mate: A virtual machine for tiny networked
sensors. In Proceedings of the ACM Conference on Architectural
Support for Programming Languages and Operating Systems, 2002.

[9] C. J. Merlin, C.-H. Feng, and W. B. Heinzelman. Information-sharing
protocol architectures for sensor networks: the state of the art and a new
solution. SIGMOBILE Mobile Computation and Communication
Revue,13:26–38, March 2010.

[10] B. Selic. The pragmatics of model-driven development. IEEE Software,

20(5):19 – 25, Sep-Oct 2003.

[11] P. Vo¨ lgyesi, M. Maro´ ti, S. Do´ ra, E. Osses, and A. Le´deczi.
Software composition and verification for sensor networks. Science of
Computer Programming, 56:191–210, April 2005.

[12] M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain, and P.
Levis. Visibility: a new metric for protocol design. In Proceedings of the
5th international conference on Embedded networked sensor systems
(SenSys), SenSys ’07, pages 73–86, Sydney, Australia, 2007.

[13] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a wireless
sensor network testbed. In Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks (IPSN), pages
483–488, April 2005.

[14] M. Woehrle, A. Meier, and K. Langendoen. On the potential of
software rejuvenation for long-running sensor network deployments. In

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 3 [ISSN 2250 - 3765]

306

Proceedings of the 1st International Workshop on Software Engineering
for Sensor Networks (SESENA), Cape Town, South Africa, 2010.

