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ABSTRACT- Non-linear programming has been extensively used 

in wireless telecommunication systems design. PAPR reduction is 

implemented in the handheld devices and low complexity is a 

major objective. High PAPR is one of the major disadvantages of 

OFDM system which is resulted from large envelope fluctuation 

of the signal. Our proposed technique to reduce the PAPR is 

based on constellation shaping that starts with a larger 

constellation of points, and then the points with higher energy 

are removed. The constellation shaping algorithm is combined 

with peak reduction, with extra abilities defined to reduce the 

signal peak. This method, called MMSE-Threshold, has a 

significant improvement in PAPR reduction with low 

computational complexity. The peak reduction formulated into a 

quadratic minimization problem is subsequently optimized by 

the semi-definite programming algorithm, and the simulation 

results show that the PAPR of semi-definite programming 

algorithm (SDPA) has noticeable improvement over MMSE-

Threshold while SDPA has higher complexity. Results are also 

presented for the PAPR minimization by applying optimization 

techniques such as hill climbing and simulated annealing. The 

simulation results indicate that for a small number of sub-

carriers, both hill climbing and simulated annealing result in a 

significant improvement in PAPR reduction, while their degree 

of complexity can be very large. 
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I. INTRODUCTION 

Non-linear and quadratic optimization techniques have always 

been important research problems in wireless 

communications. One criterion in optimization of wireless 

communication systems is minimum mean square error 

(MMSE). This paper deals with non-linear optimization 

techniques with minimum mean square error criterion. We 

examine peak to average power ratio (PAPR) reduction in 

orthogonal frequency division multiplexing (OFDM) systems. 

PAPR reduction is implemented in the handheld devices and 

low complexity is a major objective. We look at peak to 

average power ratio (PAPR) reduction of an orthogonal 

frequency division multiplexing (OFDM) system. OFDM used 

in fourth-generation wireless technology is a multi-carrier 

multiplexing technique. OFDM technology allows many users 

to transmit in an allocated band by sub-dividing the available 

bandwidth into many narrow bandwidth carriers. The narrow 

bandwidth carriers result in the signal having a high tolerance 

to multi-path delay spread, because the delay spread must be 

very long to cause significant inter-symbol interference. The 

major disadvantage of OFDM technology is when all the 

signal peaks happen at the same time which results in a signal 

with a large peak. This problem is called peak to average 

power ratio (PAPR). A lot of research is devoted to PAPR 

reduction techniques categorized as, scrambling, coding, 

unused spectrum cancellation, nonobjective constellation, tone 

reservation and tone injection. An overview of most important 

PAPR reduction techniques is given in [1].  

Since both OFDM and CDMA deal with high PAPR, we 

compare OFDM technology with the CDMA technology, to 

emphasize the advantages of OFDM over CDMA and why 

OFDM technology is suggested for fourth-generation systems. 

That is why in this paper we have just focused on PAPR 

reduction in OFDM systems. 

II. PAPR DEFINITION 

The peak of a signal x(t) is given by the maximum of its 

envelope │x(t)│. However, for a continuous random process, 

max │x(t)│can reach infinity provided that the observation 

interval is long enough. Even in a discrete random process 

where max │x(t)│is bounded, the maximum may occur at a 

very low probability. Therefore, a more useful definition of 

peak is in probability terms given by definition. A signal x(t) 

is said to have a peak xp at cut-off probability Pc if 

                                            (1) 
Therefore, the peak to average ratio (PAR) of a random 

process x(t) can be specified by its histogram. The PAR 

definition in (2) refers to the probability density function 

(PDF) generated from its time samples (i.e. collect R samples 

of x(t), plot its histogram, and the PDF is obtained as R tends 

to infinity). PAR usually refers to a discrete-time 

measurement using {xg} which is equal to xg (total). Given an N-

dimensional sample signal x of an OFDM system, where N is 

the number of sub-carriers, the PAR of OFDM is defined as, 

                                 (2) 
Similarly, the peak to average power ratio (PAPR) is usually 

defined on the continuous time signal x(t) as, 

    (3) 
 

In general,   and therefore evaluating 

performance in the discrete-time domain may lead  to 

optimistic values. Peak power limitations are usually placed at 

the power amplifier, which limits the continuous time signals; 

therefore, PAPR is generally the more relevant metric in 

practice. 
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III. PROPOSED PAPR REDUCTION METHOD 

In conventional shaping, one tries to minimize the average 

energy of the constellation for a given number of points from 

a given packing. The price to be paid for shaping involves: (i) 

an increase in the constellation-expansion ratio (CER), (ii) an 

increase in the peak to average power ratio (PAPR), and iii) an 

increase in the addressing complexity, which is the assignment 

of the data bits to the constellation points. In shaping, one 

starts with a number of points greater than what is required for 

a specific bit rate, with the objective of providing some degree 

of flexibility in the selection of the final constellation. In 

traditional shaping, this flexibility is used to select the points 

of the least average energy, but it could also be used to select 

the points with a low average energy and at the same time 

result in a small value for the peak power along the time 

dimensions. This result can be achieved with a signal 

constellation that has several choices of points (in a multi-

dimensional space) available for a given input bit label. In this 

case, the transmitter side will select the constellation point that 

results in a small average energy and at the same time has a 

small peak power (among the possible choices corresponding 

to the given binary input) as shown in Fig.1. We mix the 

objectives of reducing the peak and the average energy in the 

selection of the constellation. This requires finding a proper 

cost function to incorporate the combined effects of the peak 

and the average energy, while allowing for an efficient search 

procedure. 

IV. DEFINITION OF THE SYSTEM FOR THE AVERAGE 

ENERGY REDUCTION 
Shaping is a method for reducing the average energy required 

to transmit data relative to the average energy required for an 

unshaped (cube) constellation while maintaining the minimum 

distance between constellation points. 

 
Figure 1: OFDM transmitter structure with constellation shaping and 

PAPR reduction algorithm 

This reduction in energy is measured by shaping gain, which 

is achieved with a larger constellation size compared to an 

unshaped constellation where the increase in constellation size 

is given by the constellation expansion ratio (CER) as shown 

in Fig.2 CER is defined as the ratio of the number of points 

per 2-D of a shaped constellation to the minimum required 

number of points per 2-D to achieve the same overall rate in 

an unshaped constellation. 

This is then mapped by the quadrature amplitude modulation 

to N complex frequency points. Each of these points 

corresponds to a sub-carrier. With redundancy in the 

addressing scheme, the constellations of the modulated points 

can be shaped to reduce the overall signal energy. The 

modulated points are passed through the OFDM IFFT 

modulator, whose outputs, after parallel-to-serial conversion, 

represent N Nyquist rate time domain complex samples of the 

baseband OFDM waveform. 

 
              Figure 2: Constellation Shaping 

Using the combination of addressing and QAM modulation 

allows us to reduce the energy of the signal. Performing the 

constellation shaping for all N sub-carriers simultaneously is 

difficult, and therefore we divide the N sub-carriers into m 

sub-spaces each with k sub-carriers (N = mk), and the 

constellation shaping is performed individually for each sub-

space. The block diagram of the system is presented in Fig. 1. 

V. PEAK REDUCTION ALGORITHM WITH LOW 

COMPLEXITY 

One of the problems of the OFDM system is the 

disproportionate peaks compared to the signal average. We 

propose a technique that works in conjunction with 

constellation shaping to reduce the amplitude of these peaks. 

The N transmitted sub-carriers are composed of m = N=k sub-

spaces. In each sub-space, we designate one bit as a dummy 

bit that does not carry any data. This gives us flexibility to 

select values of the dummy bits to reduce the signal peak in 

the time domain. 

 
Figure 3: System Block Diagram 

 

Since these dummy bits are used in the shaping algorithm, 

they can have a significant effect on peak reduction. Some 

preliminary results are given in .To generate the time signal, 

we first set all the dummy bits in all the sub-spaces to 0 and 

perform the addressing, modulation, and the IFFT for all N 

points. The result is a time domain base band vector of N 

complex points: z = z1,….., zN. We define a complex clipping 

function as  

y = clip (z, T), such that a point zi in vector z will be mapped 

to point yi in vector y according to 
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                                                                    (4) 

We define the error vector e for a given threshold T as 

                                                          (5) 
where z is the time domain signal vector for all the dummy 

bits set to 0. The addressing operates on the individual sub-

spaces, and therefore changing a dummy bit in one sub-space 

changes the frequency domain points in that sub-space with no 

effect on the points in the other sub-spaces. We can therefore 

construct a set of orthogonal vectors, with each vector 

corresponding to one sub-space. Since the IFFT is an 

orthogonal transform the orthogonal vectors in the frequency 

domain result in new orthogonal vectors in the time domain. 

We can construct a vector €i for each sub-space i. To create 

this vector, we set the dummy bit to 0 in the sub-space i and 

perform the addressing and QAM modulation for that sub-

space. Then, we set the points in other sub-spaces to zero, 

resulting in a frequency domain vector si. Afterward, we set 

the dummy bit in sub-space i to 1 and zero in other sub-spaces 

and perform the same operation to obtain the frequency 

domain vector si. The corresponding time domain vector €i is 

defined as 

                                                        (6) 

Each vector  corresponds to the change of the time domain 

vector by changing the dummy bit in sub-space i. Using the 

vectors €i, we can define 

the transmitted time domain signal w for given dummy bit 

values α1,…..,αm as  

                                                            (7) 

and based on definition of z, we have 

                                                                            (8) 

From (6) and (8), we can rewrite (7) in the following 

                                            (9) 

To show that w is the transmitted time domain signal for 

selected value of αi, we transfer w to frequency domain called 

wf as 

                                                            (10) 

Where 

                                            (11)                                            

From equation (5) and (7), we can define the actual clipped 

error eact as 

                                                                                          (12) 

Minimizing the actual error defined in (12) is a complicated 

problem because of non-linear clip function; therefore we 

define a new minimization problem in (13). The performance 

of this minimization problem in terms of PAPR reduction and 

symbol error rate are evaluated by simulation and the results 

are presented in section simulation results. 
                                        (13) 

Consider a system with only one sub-space i and  the 

corresponding dummy bit value αi in (13). The first case has αi 

= 0, where the objective function in (13) is ||e||
2
. In the second 

case, the dummy bit is set to one, i.e. αi = 1, the objective 

function in (13) becomes 

 
We can therefore define a decision function γ(i) for each 

dummy bit αi as: 

                                 (14) 

where €i
H
  is the hermitian of €i. We select αi = 0 for γ(i)≥0 

and αi = 1, otherwise. We iterate over all the dummy bits, and 

use (14) to select the value of each dummy bit. Then, new 

error vector is calculated from (7) and (5), and new values of 

αi are obtained. This is done iteratively until no further 

reduction is achieved in (13). This technique is called MMSE 

Threshold and the peak reduction algorithm is summarized in 

Fig. 2. The complexity of MMSE-Threshold algorithm is 

O(N) scalar multiplications from (14) and the total complexity 

is the complexity of MMSE-Threshold algorithm plus the 

complexity of IFFT. Therefore the total complexity of 

MMSE-Threshold is O(N logN) .To evaluate the performance 

of MMSE-threshold which is based on (13), this equation is 

also minimized with one of the classical methods of quadratic 

programming called semi definite programming . Then to 

evaluate how good (13) estimates the PAPR reduction, the 

peak to average energy of w given in (7) is minimized in terms 

of αi by two heuristic algorithms called hill climbing and 

simulated annealing . The minimization of the quadratic 

problem given in (13) is known as an unconstrained quadratic 

program (UQP) for binary variables. Many combinatorial 

optimization problems pertaining to graphs such as 

determining maximum cliques, maximum cuts, maximum 

vertex packing, minimum coverings, maximum independent 

sets, and maximum independent weighted sets are also 

formulated as the UQP problem. There are many non-linear 

optimization techniques that can be utilized to solve the 

quadratic problem defined in (13). From the classical methods, 

we select semidefinite programming for comparison with 

MMSE- Threshold to minimize. To describe semidefinite 

programming, first we define a standard quadratic problem as 

[2] 

;                    (15) 

where Q can be any symmetric matrix. Since x
T
Qx = Trace 

(x
T
Qx), (15) is equivalent to the following problem, 

 

;   (16) 

The constraint X = xx
T
 implies that X is symmetric, positive 

semidefinite and rank-1. Due to the constraint X = xx
T
, (16) is 

a non-convex optimization problem. If we remove the rank-1 

constraint, we obtain the following relaxed problem known as 

semidefinite programming (SDP) problem 
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;  

                                            (17)                 

where X ≥ 0 means that X is symmetric and positive 

semidefinite. 

The quadratic problem defined in (13) is solved by 

semidefinite programming package given in [3]. First, the 

binary variables αis are changed to x(-1, 1) of semidefinite 

programming according to [4], then the solution of 

semidefinite programming is mapped to the solution of binary 

quadratic 

problem by randomization technique defined in [2]. The 

complexity of semidefinite programming is estimated in 

polynomial time according to [2]. 

To evaluate how good (13) estimates the PAPR reduction ,the 

peak to average of w given in (7) is minimized in terms of  by 

two αi heuristic algorithms called hill climbing and simulated 

annealing. Hill climbing (discrete form of steepest descent 

algorithm)  is a search technique which starts with a known 

solution and at each step examines all possible changes to the 

input parameters, dummy bits in our case, and selects the 

change that results in the best improvement. In this 

application, we set all the dummy bits to 0, perform the entire 

encoding process and calculate the PAPR. Then, we iterate 

over all the dummy bits and for each dummy bit we flip the 

value and perform the encoding and calculate the PAPR. For 

each flip, we must undo all previous flips, i.e. each new 

solution is different from the current one by one bit. We find 

the bit that results in the largest decrease, flip it and continue 

until no further improvement is observed. The complexity of 

hill climbing can be as large as that of the exhaustive search. 

The other optimization technique examined is the simulated 

annealing. Simulated annealing is a generalization of a Monte 

Carlo method for examining the equations of state and frozen 

states of a system. To apply the simulated annealing technique 

to our problem, we start with all dummy bits set to zero and 

the solution with temperature Temp. In this application, the 

PAPR is interpreted as the energy E of the system. Similar to 

the hill climbing method, all the possible bits are flipped, and 

for each possible dummy bit flip, ΔE is calculated as the 

difference in the PAPR in the two cases. If the change is 

negative, the new configuration is accepted and if it is 

positive, it is accepted with the probability of exp(-

ΔE=(KBTemp), where KB is the Boltzman's constant. Over 

time, the temperature Temp will be slowly decreased until it 

reaches 0, where the simulated annealing becomes a hill 

climbing search. Once no further improvement is made, the 

algorithm terminates. The complexity of simulated annealing 

can be as large as that of the exhaustive search. 

 

VI. SIMULATION RESULTS 

The simulation is done for QAM-256 in two different cases 

for MMSE-Threshold. 

1- When the clipping threshold is set to zero, and starting 

point for the minimum PAPR search is set to all dummy bits 

equal to zero. In this case, the simulations are done for two 

different numbers of sub-carriers, N = 128 and N = 1024. 

2- When the optimum value of threshold for minimum PAPR 

is determined by simulation and few random starting points 

are tried to select the minimum PAPR among them. In this 

case, the simulations are performed for two different numbers 

of sub-carriers, N = 256 and N = 1024. 

In both of these cases, as the number of sub-carriers changes, 

PAPR changes considerably. In addition, simulation is done 

for different numbers of bits per dimension (QAM-4, QAM-

16, QAM-64); however, there is a negligible change in PAPR. 

Therefore, the corresponding graphs are not presented. In 

MMSE-Threshold, we have considered one dummy bit to 

have the choice of selecting the set with lower PAPR. 

Simulation results show that increasing the number of dummy 

bits has a negligible effect on PAPR but a noticeable effect on 

the clipped energy above the threshold. Since MMSE-

Threshold is based on a clipping algorithm and clipping is a 

non-linear operation, MMSE-Threshold does not guarantee 

that we can get the minimum PAPR, but the simulation results 

show a large improvement in PAPR for MMSE-Threshold 

compared to original OFDM. We minimize the error by (13) 

at an appropriate threshold level and 20 random starting points 

for case 2 of simulations for MMSE-Threshold. In Fig. 4 and 

Fig. 3, the time domain signal is obtained by assuming zero 

value for dummy bits in different sub-spaces and the threshold 

is set to zero. In these figures, cumulative distribution of 

PAPR in terms of PAPR values is depicted. From Fig. 4 and 

Fig. 3, it is clear that by the proposed MMSE-Threshold, we 

have gained an improvement of approximately 5dB and 4dB 

at 10
-3

 in PAPR reduction for N = 128 and N = 1024, 

respectively. Because the average energy in the proposed 

method has reduced 1dB, the PAPR graphs of the proposed 

method are shifted to the left with 

 
    Figure 4: Probability that PAPR is grater than PAPR values on the x 

axis (N=128) 

the amount of 1dB for a fair comparison. Fig.5 shows the 

energy clipped above threshold for different threshold levels. 

As it is clear from the graph, by increasing the number of 

dummy bits, total clipped energy decreases but it has a 

negligible effect on PAPR, which is shown in Fig 8 Therefore, 

we assume only one dummy bit in every sub-space. Fig. 7 

shows the probability that the PAPR is larger than some 

defined value using a system with N = 256 for the following 

optimization techniques: 
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Figure 5: Probability that PAPR is grater than PAPR values on the x axis 

(N=1024) 

 
Figure 6: Clipped energy above threshold for different numbers of 

dummy bits (N=1024) 

MMSE-Threshold, semidefinite programming, hill climbing, 

simulated annealing and exhaustive search. Fig. 7 indicates 

that MMSE-Threshold results in PAPR of 6.7 dB at the 

probability of 10
-3

, which corresponds to an improvement of 

about 4dB over the original OFDM system, while SDPA has 

achieved noticeably better PAPR with higher complexity. 
 

 
Figure 7: PAPR reduction for different numbers of dummy bits (N=1024) 

The PAPR reduction for exhaustive search, hill climbing and 

simulated annealing are better than that of MMSE-Threshold 

technique because they have minimized the PAPR problem 

(not the quadratic problem defined in with much higher 

complexity compared to MMSE-Threshold. Fig.9 represents 

the PAPR results for a system with N = 1024 for the following 

optimization techniques: MMSE-Threshold, semi-definite 

programming, hill climbing and simulated annealing. The 

exhaustive search algorithm is not feasible due to the size of 

the problem in this case. MMSE- Threshold results in PAPR 

of 7:5 dB at the probability of 10
-3

, which corresponds to an 

improvement of about 4 dB over the original OFDM system, 

while SDPA has noticeable improvement over that of MMSE-

Threshold with higher complexity. 

 
Figure 8: Probability that PAPR is grater than PAPR values on the x axis 

(N=256) 

 
Figure 9: Probability that PAPR is grater than PAPR values on the x axis 

(N=1024) 

The PAPR reduction for simulated annealing is better than 

that of MMSE-Threshold technique because it has minimized 

the PAPR problem (not the quadratic problem with much 

higher complexity compared to MMSE-Threshold. The hill 

climbing performance is significantly inferior compared to the 

simulated annealing technique because the number of sub-

carriers is large. In terms of symbol error rate (SER), MMSE-

Threshold has negligible degradation compared to the original 

OFDM signal in additive white Gaussian noise (AWGN) 

channel and the corresponding graph is not presented. 

VIII. CONCLUSION 

Simulation results show that the PAPR reduction of MMSE-

Threshold is significant compared to the original OFDM. The 

PAPR reduction of SDPA is noticeably better than MMSE-

Threshold, while the complexity of MMSE- Threshold is less 

than that of SDPA. MMSE-Threshold is compared with some 

state-of-the-art methods, and the simulation results show that 

our proposed technique has better or similar PAPR reduction 

compared to the state-of-the-art techniques and the proposed 

technique's complexity is low. In addition, the proposed 

method results in a 1dB reduction in average energy. 
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