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Abstract—The simulated model calculates the phase matching 

angle for a parallel isotropic slab made of Zinc Telluride 

(ZnTe), Cadmium Telluride (CdTe), Gallium Arsenide (GaAs) 

and Zinc Selenide (ZnSe) having thickness ‘t’ at a given 

wavelength of 10.6 µm by determining the wave-vector 

mismatch. The model also generates the status of fulfillment of 

Total Internal Reflection (TIR) inside the semiconductor slab. 

The simulated results indicate phase matching angle of 0.9034 

rad for a slab thickness of 800 µm in case of ZnTe and 0.5457 

rad for CdTe taking the slab thickness as 500 µm. The phase 

matching angle for ZnSe is 1.481 rad and that of GaAs is 

0.6984 rad for a slab of thickness 800 μm for both the 

materials. For all the cases, the TIR condition is found 

satisfying.  

Keywords- Wave-vector mismatch, Phase matching, Quasi 

phase matching, Isotropic, Total Internal Reflection Quasi Phase 

Matching, Sellmeier’s Equation. 

I.  INTRODUCTION  

Mid-infrared tunable sources are of immense interest 

for applications starting from environmental monitoring to 

spectroscopy, medical diagnosis, thermography etc. 

Semiconductors of the technological mainstream are 

excellent candidates for optical parametric conversion in the 

mid-infrared region. They, indeed offer a number of 

advantages such as (1) are transparent in the near- and mid 

infrared regions, (2) possess high nonlinear second-order 

coefficients χ
(2)

, (3) benefit from a mature technology, and 

(4) can stand a high incident energy flux. These materials 

are, however, optically isotropic, so that no natural 

birefringence phase matching scenario is possible. 

 

In their founding paper, Armstrong et al. [1] suggested 

the use of the relative phase change between the harmonics 

and the fundamental waves on total internal reflection in 

nonlinear materials. This principle was demonstrated by 

Boyd and Patel [2] as well as Komine et al. [3] in their 

seminal papers, by phase matching second-harmonic 

generation in isotropic semiconductors. Theoretical 

predictions were in good agreement with experimental 

observations and measurements. However, scarce efforts 

have been devoted to develop this technique and investigate 

its potentialities and limitations [4]. 

The following paper deals with the determination of the 

phase matching angle for TIR-QPM in a parallel slab (of 

thickness t and slab angle Ψ) for some optically important 

isotropic semiconductors such as GaAs, ZnSe, CdTe, ZnTe. 

The simulation has been done on matlab simulink platform 

due to the user friendly nature of the software. The user 

simply needs to input a no. which corresponds to a 

particular isotropic material from among the materials that 

have been considered for the analysis. The fundamental 

input wavelength, operating temp, slab thickness t and angle 

of the slanted slab surface w. r. t the vertical axis can be 

changed as per requirement of the user. On the basis of the 

input parameters, the phase-matching angle that needs to be 

subtended inside the parallel slab by the fundamental beam 

has been calculated. At the same time care has been taken 

that the subtended angle also satisfies the Total Internal 

Reflection (TIR) criteria. The results obtained from the 

simulink model have been verified with the help of an 

appropriate matlab program. 
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II. MATHEMATICAL ANALYSIS                

A. Total Internal Reflection Quasi Phase Matching 

 

 It was first in 1962, when Armstrong et al. suggested 

that QPM can be obtained by Total Internal Reflection 

(TIR) in a plane parallel plate. This technique proposed a 

phase corrective scheme whereby the phase mismatch in a 

nonlinear optical process is periodically corrected by 

introducing a periodicity to the nonlinearity of the medium 

corresponding to the coherence length. The coherence  

  
Figure 1.   Phase matching technique using Total Internal Reflection in 

parallel semiconductor slab for second harmonic generation scheme. 

 

length is defined as the distance taken by the fundamental 

and the harmonic light to become       out of phase   his 

TIR-QPM technique makes use of the differential Fresnel 

phase shifts experienced by the interacting waves as they 

undergo total internal reflection on the material-air 

interface. Hence this technique is also known as Fresnel 

Phase Matching. The schematic diagram of Fresnel Phase 

Matching for second harmonic generation is shown in 

fig.(1). Here L indicates the distance between successive 

bounces and t denotes the slab thickness; ω indicates the 

fundamental frequency, α is the angle of incidence inside 

the slab and ∆фF denotes the differential Fresnel Phase shift.  

 

 In this scheme, two optical waves at same frequency ω 

are injected into the plate by one of the slanted face. The 

input optical waves and the resultant second harmonic ω3 (= 

2ω) generate wave vectors k, k and k3 respectively in the 

semiconductor slab. The coherence length Lcoh for SHG 

interaction is given as Lcoh = π/∆k where ∆k = k3- 2k is the 

wave vector mismatch. 

1. Resonant Quasi Phase Matching 

Boyd, Patel and Komine noted that Fresnel phase shift 

ΔϕF can virtually reach any value between   and 2π   his is 

basically different from the usual Quasi Phase Matching in 

which the phase shift from one domain to the other is 

bounded by π   he global parametric process efficiency is 

given by η α η1η2. At first there is a parametric conversion 

on each path L between two bounces so that during first 

term of conversion the efficiency η1η2 are maximized. The 

conversion yield η1 can be written as [4]:   

                                    (1) 

Then the individual fields generated along the path will 

interface with one another. This introduce the following 

term: 

                           (2) 

where, N is the number of bounces inside the plate. 

Therefore, overall conversion efficiency is given as  

 

                 (3) 

Resonant is the situation in which ΔKL = π (mod 2π) 

i.e., the distance L between two successive bounce is 

exactly an odd number of coherence length Lc for 

conversion process (ΔKL =  π)  In that case the added phase 

shift ΔϕF + δϕ  must be exactly π in order to get a quasi 

phase matched growth of conversion signal throughout the 

crystal.       

2.   Non-Resonant Quasi Phase Matching 

    When the distance between two successive bounces 

is not equal to an odd multiple of Lc then the situation is 

called non-resonant. The distance L between two successive 

bounces is not optimized for a one way conversion process. 

But still the quasi phase matching condition is assumed to 

be satisfied so that Δϕ = ΔKL +ΔϕF +δϕ = 2π (mod 2π). The 

situation is possible only because the Fresnel phase shift 

ΔϕF added to δϕ can virtually compensate for any phase-

mismatch, ΔKL. And ΔKL = (δ+ )π where 1 is odd integer. 

Fresnel phase shift ΔϕF combined with δϕ can virtually 

reach any value between 0 to 2π (mod 2π) thus greatly 

alleviating the quasi phase matching conditions. With 

suitable polarization configuration non-resonant phase 

matching plays an important role in such case [4]. 

B. Sellmeir’s Equation 

The Sellmeier equation is an empirical relationship 

between refractive index and wavelength for a particular 

transparent medium. The equation is used to determine the 

dispersion of light in the medium. It was first proposed in 

1871 by W. Sellmeier, and was a development of the work 

of Augustin Cauchy on Cauchy's equation for modeling 

dispersion. 

 

     The usual form of the equation for glasses is 

 

                      (4) 

 

 where, n is the refractive index, λ is the wavelength, and 

B1,2,3 and C1,2,3 are experimentally determined Sellmeier 
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coefficients. These coefficients are usually quoted for λ in 

micrometres. Note that this λ is the vacuum wavelength; not 

that in the material itself, which is λ/ n(λ). A different form 

of the equation is sometimes used for certain types of 

materials, e.g. crystals. 

In our analysis, for the isotropic materials, CdTe and ZnTe 

the temperature independent Sellmeier equation have been 

used while for GaAs and ZnSe temperature dependent 

Sellmeier equation have been used [5-9]. 

 

 
Figure 2.   Simulated model for determining phasematching angle for non-
resonant TIR-QPM in a parallel slab. 

III. SIMULATED MODEL 

The simulated model is used to find out the wave-

vector mismatch, phase matching angle, and the status of 

TIR condition in a parallel plate of thickness t (fig.1 ) for a 

fixed fundamental wavelength of 10.6 µm at a temperature 

of 298 K. The simulated model is shown in the fig (2). 

By selecting the materials by switch case (1 for ZnTe, 2 for 

CdTe, 3 for GaAs and 4 for ZnSe) the refractive index of the 

particular material at the fundamental wavelength and the 

generated Second Harmonic has been calculated by using 

Sellmeier‟s Equation in the switch case subsysytems  

The switch case subsystems are discussed below: 

1. Switch Case 1-A: 

It calculates the temperature independent refractive index of 

Zn e at the fundamental wavelength by using Sellmeier‟s 

equation.  he standard Sellemier‟s equation can be written 

 as n
2
=A + [Bλ

2
/(λ

2
-c

2
)] where n is the refractive index and 

λ is the wavelength in microns  For Zn e the best values of 

the parameters are A=4.27, B=3.01, and c
2
=0.142 [5]. 

2. Switch Case 2-A: 

It calculates the temperature independent refractive index of 

CdTe at the fundamental wavelength by using Sellmeier‟s 

equation. In this case, A=5.68, B=1.53, and c
2
=0.366 [6]. 

3. Switch Case 3-A: 

It calculates the temperature dependent refractive index of 

GaAs at the fundamental wavelength by using Sellmeier‟s 

equation as[7]: 

     (5) 

 

where, g0 = 5.372514, g1 = 27.83972, g2 = 0.031764 + (4.35 

x 10
-5

 x Temp) + (4.664 x 10
-7

 x Temp
2
), g3 = 0.00143636, 

lam1 = 0.4431307 + 5.0564 x 10
-5

 x Temp, lam2 = 

0.8746453 + 1.913 x 10
-4

 x Temp – 4.882 x 10
-7

 x Temp
2
, 

lam3 = 36.9166 – 0.011622 x Temp, Temp=Tempin-295; 

Tempin being the input temperature. 

4. Switch Case 4-A: 

It calculates the temperature dependent refractive index of 

ZnSe at the fundamental wavelength by using Sellmeier‟s 

equation as [8]: 

        (6) 

 

where, Et = 9.01536 + 1.4419 x 10
-3 

x Temp + 3.32973 x  

10
-7 

x Temp
2
 - 1.08159 x 10

-9 x 
Temp

3 
- 3.88394*10

-12
 x 

Temp
4
, At=0.24482 + 2.77806 x 10

-5
 x Temp + 1.01703 x 

10
-8

 x Temp
2 

- 4.51746 x 10
-11 x 

Temp
3
 + 4.18509 x 10

-13
 x 

Temp
4
, Bt=3.08889 + 1.13495 x 10

-3
 x Temp + 2.89063 x 

10
-7

 x Temp
2 

- 9.55657 x 10
-10

 x Temp
3 

- 4.76123 x 10
-12

 x 

Temp
4
, 

 
lamu=0.29934+1.004 x 10

-4
 x Temp, 

lami=48.38+6.29 x 10
-3

 x Temp, Temp=Tempin-293; 

Tempin being the input temperature. 

 

Similarly, the refractive index of the materials at the Second 

harmonic has been calculated in the respective Switch Case 

2-A, 2-B, 2-C and 2-D taking the half wavelength λ/2  

 

The parameters are calculated from the following 

subsystems as discussed below: 

 

i) Subsystem 1& 2:  

 

Subsystem 1 & 2 are used for selecting the calculated 

refractive index of the particular material for fundamental 

and generated second harmonic beam. These parameters are 
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subsequently used to determine the wave-vector mismatch 

and phase matching angle. 

 

ii) Subsystem 3: 

This subsystem is used to calculate the wave-vector 

mismatch, given by ∆k = k3- 2k, k and k3 being the wave-

vectors of the fundamental and generated Second Harmonic 

wave respectively[4]. 

Here, k=2πn/λ, where n is the refractive index and λ being 

the given wavelength. 

 

iii) Subsystem 4:  

 

In subsystem4, the phase-matching angle is calculated 

depending on the width of the slab (which may be varied as 

per user‟s choice)   he phase matching angle is calculated 

by using the Fresnel Phase Shift [10] : 

 

         (7) 

 

iv) Subsystem 5:  

 

This subsystem displays whether the TIR condition satisfies 

or not. If the phase matching angle which is the incident 

angle in this case is greater than the critical angle then the 

TIR condition is satisfied. The respective display shows 1 if 

TIR condition is satisfied else 0. 

 

IV. RESULT AND DISCUSSION 

 

In the simulated model, a parallel slab of defined thickness 

„t‟ has been considered and the simulation has been 

performed at a fundamental wavelength of    6 μm for SHG 

conversion. The simulated model analytically determines 

the wave-vector mismatch, phase matching angle and status 

of TIR condition for isotropic materials ZnTe, CdTe, GaAs 

and ZnSe. For GaAs and ZnSe,the temperature dependent 

Sellemier‟s Equation has been used, where the user can vary 

the temperature as per requirement. For ZnTe and CdTe, the 

Sellemier‟s Equation is independent of the temperature  

Table I shows the obtained results of the different 

parameters for the chosen materials: 

 

TABLE I.  DETERMINATION OF PHASE MATCHING ANGLE FOR NON 

RESONANT TIR - QPM  IN A PARALLEL SLAB 

Mater

ial 

Input 

Temp

eratu

re (K) 

Thic

knes

s of 

slab 

(µm)  

Wave vector 

mismatch 

(cm
-1

) 

Phase 

Matchi

ng 

angle 

(rad) 

TIR 

Con

ditio

n 

ZnTe 0 800  3.198e+006 0.9034 1 

CdTe 0 500  3.183e+006 0.5457 1 

GaAs 298 800  3.951e+006 0.6984 1 

ZnSe 298 800 2.846e+006 1.481 1 

 

V. CONCLUSION 

 

In this paper, a MATLAB simulink model is described 

which determines the phase matching angle of a given 

material as well as the wave vector mismatch showing the 

status of TIR condition for a parallel slab of defined 

thickness. This is a user friendly model whereby the phase 

matching angle can be obtained by choosing a material and 

its width at a fixed temperature. This model can also be used 

for determining the condition of TIR for a particular 

wavelength at a given temperature and thickness for a SHG 

converter. 
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