
1

Verification of Particle Filtering Based Framework
Implemented in MATLAB®

Miroslav Krupa
Department of Control and Instrumentation

Brno University of Technology, Faculty of Electrical Engineering and Communication
Brno, Czech Republic

miroslav.krupa@phd.feec.vutbr.cz

Abstract— Particle Filtering (PF) technique is functional
approach for tracking application, navigation problem and in
non-linear non-Gaussian system estimation problem. Technical
diagnosis and prognosis is another promising area where PF is
getting into foreground especially for Remaining Useful Life
(RUL) estimation and potential fault prediction. The main reason
is that PF could handle different types of noises and can handle
measurement uncertainties, which are typically connected to
problem of real degradation estimation. Even PF has different
kind of filtering method and re-sampling algorithms there is still
only limited number of real comparisons available in the state-of-
the art literature, especially from the point of root mean square
error and computational demandingness. Main aim of this paper
is to present different type of PF implementation and compare
those on simple system simulation. At the same time an object
oriented MATLAB Toolbox for Particle Filtering deve loped by
Scientific Systems Company Inc. and University of North
Carolina is introduced. This toolbox covers the gap in limited
number of real, configurable and robust PF implementation
available to broader pool of scientists and engineers.

Keywords — particle filtering framewok, particle filtering
toolbox, technical prognosis, root mean square error, resampling
technique, computational profiler

I. INTRODUCTION

Fault or fault indicator prediction is a process with high
uncertainty and it has been proven that Bayesian estimation
techniques provides framework which can deal with such
uncertainties [7], consequently it is not surprising that those
techniques are finding application domains in machinery fault
diagnosis and prognosis of the remaining useful life of a failing
component/subsystem.

Bayesian estimation with particle filters is alternative to
Kalman filters for estimating the posteriori in Bayesian
framework model not limited by either linearity or Gauss noise
assumption. They are also known as sequential Monte Carlo
simulation methods and are particularly useful for situations
where the posterior distribution is multivariate and or non-
standard [5]. Particle filters are methods based on point mass
(or “particle”) representations of probability densities, which
can be applied to any state-space model and which generalize
the traditional Kalman filtering methods. Several variants of
the particle filter such as Sequential Importance Re-sampling
(SIR), Adaptive Sample Importance Re-sampling (ASIR) and
Regularized Particle Filter (RPF) exists within a generic

framework of the sequential importance sampling (SIS)
algorithm [1]. In other wording particle filtering is a technique
for implementing recursive Bayesian filter by Monte Carlo
sampling. The main idea is to represent the posterior density by
a set of random particles with associated weights. Estimate is
computed based on these samples and weights. Particle filters
use weighted set of samples (particles) for approximating the
filtering distributions. See summarized list of PF advantages
and disadvantages as per [1], [2] and [3].

PF Advantages:
• Applicable even to non-linear systems
• Adaptive focusing on probable regions of state-

space
• Working for non-Gaussian noise
• Ability to represent arbitrary densities
• The framework allows for including multiple

models (tracking maneuvering targets)
PF Disadvantages:

• Difficult to determine optimal number of particles
• High computational complexity (depending on

number of system states)
• Number of particles increase with increasing

model dimension
• Potential problems: degeneracy and loss of

diversity
• The choice of importance density is the most

important
PF usage for purpose of trajectory estimate was

demonstrated in [2]. Battery degradation tracking and
remaining useful life prediction based on particle filtering
method has been demonstrated in [4]. There are many other
areas, where we can find deployment of this powerful and
robust approach.

II. PARTICLE FILTERING ALGORITHMS

A dynamic system could be described as state sequence
represented by Markov random process. State equation (is quite
commonly available but equations are collected from [1], [7]:

�� � �������,
�� (1)

Where xk is state vector at time instant k, fx is state transition
function, ωk is process noise with known distribution.
Observation equation:

2

� � �����, ��� (2)
Where yk is observations at time instant k, hx is observation

function, vk is observation noise with known distribution. The
main Bayesian framework objective is to estimate unknown
state xk, based on a sequence of observations yk, k=0,1. In other
wording find posterior distribution:

����:�|�:�� (3)

The importance normalized weights wk
(i) are approximations

to the relative posterior probabilities of the particles such that:

� ����� ∗ ����|��:����� � � ��� ∗ � ����
!

�"#
,

$ ���
!
�"# � 1 (4)

A common problem with the SIS particle filter is the
degeneracy phenomenon, where after a few iterations, all but
one particle will have negligible weight [1]. There is a way
how suitable measure degeneracy of weights. An effective
sample size approach has been introduced in [3] an estimated
effective sample size &'(() is defined as:

&'(() � #
∑ �+,

�-��./-01
 (5)

Where &'(() 2 3 indicates severe particles degeneracy. Re-
sampling is used to avoid whenever severe particle degeneracy
is indicated by &'(() 2 3, the main goal as mentioned above is
avoiding cases in which all but one of the importance weights
are close to zero, in other wording the basic idea of is to
eliminate particles that have small weights and to focus on
particles with large weights [7]. See next sections with
description of different particle algorithms implementation and
its sequence steps.

A. Generic Particle Filter

Generic particle filter represents implementation, which
includes the observations into the proposal density. This is
basis implementation of SIS filter [1].

45��� , ��� 6�"#7 8 � 93:45���#� , ���#� 6�"#7 , �8
• FOR i = 1 : N

o Draw: ��
��� ~ ����|���#�

o Calculate: ��
��� � ��<�|���#�

• END FOR

• Calculate total weight: = � $ ���
7
�"#

• FOR i = 1 : N

o Normalize: ��
��� � +,�-�

>

• END FOR
• Calculate &'(()
• IF &'(() ? &@AB'CADEF

o RESAMPLE using algorithm
o 45��� , ��� , G6�"#7 8 �

HIJKL3MI45���#� , ���#� 6�"#7 , <�8
• END IF

(6)

B. Sample Importance Resampling (SIR) Filter

As the importance sampling density for the SIR filter is
independent on measurement, the state space is explored
without any knowledge of the observations [1]. Therefore, this
filter can be inefficient and is sensitive to outliers. Furthermore,
as re-sampling is applied to each iteration, this can result in
rapid loss of diversity in particles. However, the SIR method
does have the advantage that the importance weights are easily
evaluated and that the importance density can be easily
sampled [3] .

45��� , ��� 6�"#7 8 � JNH45���#� , ���#� 6�"#7 , �8
• FOR i = 1 : N

o Draw: ��
��� ~ ����|���#�

o Calculate: ��
��� � ���|���#�

• END FOR

• Calculate total weight: = � $ ���
7
�"#

• FOR i = 1 : N

o Normalize: ��
��� � +,�-�

>

• END FOR
• RESAMPLE using algorithm

o 45��� , ��� , G6�"#7 8 �
HIJKL3MI45���#� , ���#� 6�"#7 , �8

(7)

C. Regularized Particle Filter

Regularized particle filter (RPF) implementation focuses on
avoiding the problem when all particles will collapse to a single
point within a specified time period [3]. The RPF is identical to
the SIR filter, except for the re-sampling stage.

45��� , ��� 6�"#7 8 � H3:45���#� , ���#� 6�"#7 , �8
• FOR i = 1 : Ns

o Draw: ��
��� ~ ����|���#�

o Calculate: ��
��� � ���|���#�

• END FOR

• Calculate total weight: = � $ ���
7O
�"#

• FOR i = 1 : Ns

o Normalize: ��
��� � +,

�-�
>

• END FOR
• Calculate &'(()
• IF &'(() ? &@AB'CADEF

o Calculate Empirical covariance
matrix Sk of 5��� , ��� 6�"#7

o Compute P�P�Q � J�
o Resample using

RS��� , T�� , GU�"#
7 V �

HIJKL3MI RS���#� , T��#� U�"#
7 , �V

o FOR i = 1 : Ns
� Draw W� ~ X

from Epachnikov
Kernel

� ���∗ � ��� Y

(8)

3

 �Z!Q . P�. W�
o END FOR

• END IF

D. Auxiliary Sampling Importance Resampling

ASIR filter is a variant of the standard SIR filter. This filter
can be derived from the SIS framework by introducing an
importance density \���,]|#:�� , which samples the pair
5��� ,]^6^"#7 , where]^ refers to the index of the particle at _ G 1.
Algorithm steps are defined as per [1]:

45��� , ��� 6�"#7 8 � KJNH45���#� , ���#� 6�"#7 , �8
• FOR i = 1 : Ns

o Calculate: `��
o Calculate:

��
��� � \�]|#:��. a. ���|`�� �. ���#�

• END FOR

• Calculate total weight: = � $ ���
7O
�"#

• FOR i = 1 : Ns

o Normalize: ��
��� � +,�-�

>

• END FOR

• Resample using RS��� , T�� , GU�"#
7 V �

HIJKL3MI RS���#� , T��#� U�"#
7 , <�V

• FOR i = 1 : Ns

o Draw: ��
��� ~ \���b]^, �� �

���� c���#� ^d

o Assign weigth: ��
��� � e�,|�,f�

e�,|g,
-f�

• END FOR

• Calculate total weight: = � $ ���
7O
�"#

• FOR i = 1 : Ns

o Normalize: ��
��� � +,

�-�
>

• END FOR

(9)

E. Extended Kalman Filter

Even it is not particle filter we should mention Extended
Kalman filter (EKF) as an option for non-linear solution. EKF
is the nonlinear version of the Kalman filter which linearizes
about an estimate of the current mean and covariance. EKF is
considered as default estimation technique and is quite well
known. See more detailed description in [8]

III. IMPLEMENTATION AND VERIFICATION

In previous section detailed background PF. Mathworks do
not offer any standard toolbox for particle filters, even there is
System Identification Toolbox with Kalman filters and ARMA
models. There is only limited number of real examples of PF
implementation but no solid and mature approach. After
detailed research the PFLib - An Object Oriented MATLAB
Toolbox for Particle Filtering developed by [4] was selected for
all simulation and system verification. This toolbox is product

of Scientific Systems Company Inc. and University of North
Carolina at Chapel Hill, developed under a United States Army
Small Business Technology Transfer (STTR) project called
“Advanced Computational Algorithms for Nonlinear Filtering
for Real Time Environment". Toolbox could be used under
GNU License, which is followed in this paper. The
implementation of a filtering algorithm and its use are
separated by an object oriented approach. Major algorithms and
options have been implemented by authors [4] followingly:

• Simple Particle Filter

• Auxiliary Particle Filter

• Regularized Particle Filter,

• Extended Kalman Filter,

Resampling schemes includes - None, Simple
(Multinomial), Residual and Systematic. Other available
parameter choices include sampling, frequency, number of
particles, and specifation of Jacobians for EKF needs.

A. Comparison of PF algorithms

As a part of particle filter verification and familiarization
with new filtering technique a simple one dimensional system
model has been selected in a form:

 �� � 0.5 ∗ ���# Y jk∗�,l1
#m�,l1.

�� � �,.
j� (1)

Simulation has been performed with following variances
with Gauss Noise Distribution:

• Different Filter Types (Simple, Auxiliary,
Regularized, EKF)

• Different parameters ω process noise distribution
mean, variance

• Different Re-sampling

• Different number of particles

Figure 1. Filtering of a system represented by Equation 2 for simple SIR,
Ns=60, Residual re-sampling, Resample every 2 samples

4

Figure 2. Evolution of State Density Represented by Particles for SIR filter,

Ns=60, Residual re-sampling, Resample every 2 samples

We can see in previous figures simulation results and
evolution of particles state desnity during simulation. Method
of comparing RMSE has been chosen to numerically compare
each PF methods and it ability to track internal states. See next
figure 3, with RMSE evolution during simulation.

Figure 3. RMSE of Estimation for Each PF algorithms one particular run

In next table you can see comparison of root mean square
error (RMSE) for different number of particles (EKF is
mentioned just for completeness). RMSE or sometimes called

as a Root Mean Square Deviation (RMSD) is quite common
metric for comparison estimators and is usually defined as:

HLJI � n∑ ��1,-� �.,- .o-01
7 (III-2)

Where �#,� is simulated system state and �j,� is estimated
value.

TABLE I. COMPARISON OF DIFFERENT IMPLEMENTATION OF PARTICLE
FILTERS

Filter Type

Simple PF
RMSE[-]

AUX PF
RMSE[-]

Regularized
PF

RMSE[-]

EKF
RMSE[-]

Number of
Particles

 Residual resampling every 3steps
Ns=15 1.9613 1.8417 1.5772

1.3247

Ns=30 1.4558 1.4431 1.3601
Ns=60 1.9238 1.4217 1.3415
Ns=120 1.7281 1.7168 1.4394
Average 1.7673 1.6058 1.4296 1.3247

 Residual resampling every 1 step
Ns=15 1.7119 2.4440 1.2842

1.3247
Ns=30 1.4777 1.8479 1.4589
Ns=60 1.5525 10.695 1.9160

1.3247
Ns=120 1.7372 1.9304 1.7282
Average 1.6198 4.2293 1.5968 1.3247

 Simple resampling every 3steps
Ns=15 2.4283 2.6377 1.2887

1.3247
Ns=30 1.6694 1.2549 1.7117
Ns=60 1.7376 1.3906 1.8065
Ns=120 1.8542 1.9901 1.6934

 1.9224 1.8183 1.6251 1.3247
 Systematic resampling every 1step

Ns=15 1.2458 1.3018 1.5780

1.3247
Ns=30 1.3729 1.5634 2.1945
Ns=60 1.5984 1.3867 1.3793
Ns=120 1.6572 1.0777 1.3531

 1.4686 1.3324 1.6262 1.3247

Figure 4. Comparison of RMSE for different resampling methods

MATLAB software provides the Profiler functionality,
which enables to evaluate execution time of each algorithms
including its sub-functions. This tool is quite helpful in
algorithms development and optimizing. It provides
information not only about execution time but even the number
of calls. See results of profiling for different particle filters

5

TABLE II. COMPARISON OF EXECUTION TIME OF DIFFERENT PARTICLE
FILTER ALGORITHMS (MEASURED TIME FOR 150 STEPS)

Filter Type

Simple PF
Exec

Time[ms]

AUX PF
Exec

Time[ms]

Regulariz
ed PF
Exec

Time[ms]

EKF
Exec

Time[ms
] Number of

Particles

 Residual resampling every 3steps
Ns=15 1.3 2.8 1.4 0.1
Ns=30 2.8 5.7 2.6 0.1
Ns=60 5.7 9.7 5.5 0.1
Ns=120 11.0 19.5 11.3 0.1

Avg per part. 0.093 0.168 0.092 0.002
 Residual resampling every 1 step

Ns=15 1.6 2.7 1.6 0.1
Ns=30 2.5 5.9 2.3 0.1
Ns=60 7.9 8.3 7.5 0.0
Ns=120 10.8 20.2 10.7 0.2

Avg per part. 0.102 0.164 0.098 0.002
 Simple resampling every 3steps

Ns=15 1.9 2.4 1.4 0.1
Ns=30 2.6 5.4 2.6 0.1
Ns=60 5.3 10.0 4.8 0.1
Ns=120 11.5 19.6 11.5 0.1

Avg per part. 0.094 0.166 0.090 0.002
 Systematic resampling every 1 steps

Ns=15 1.7 2.2 2.0 0.1
Ns=30 3.0 5.2 2.6 0.3
Ns=60 4.3 12.8 4.3 0.1
Ns=120 11.4 19.4 11.7 0.1

Avg per part. 0.090 0.176 0.091 0.003

As we can see from results in Table II the most time
consuming execution is in case of implemented AUX
algorithm. The rest of the execution seems to be proportionally
dependent on number of particles as expected in theory.

Figure 5. Final Particle Comparison considering time execution and RMSE

Just for completeness a testing for Non-Gaussian
distribution was performed. Gamma distribution (a = 2, b = 1)
was used for simulation of internal states and the results were
similar to previous utilizing Gaussian PDF. From embedded
point of view there is a room for algorithms optimization. Non
Particle approach EKF is still promising and is considered as a
default approach. What has to be mentioned in support of
promising PF is fact that initialization portion of the internal

state estimates takes several steps, which cause worse RMSE.
It has been verified than in longer simulation run the results
nearly overcomes EKF.

IV. CONCLUSION

Different types of particle filters are presented including
detailed description of algorithms. Simple, Regularized and
Auxiliary particle filters are tested together with well known
and established Extended Kalman Filter. Based on the results it
is indicated that EKF still overcomes PF from execution time
point of view in case of Gaussian noise. An object oriented
MATLAB Toolbox for Particle Filtering has been verified and
it is proven that implementation of particle filtering toolbox is
ready for use and could be utilized not only for prognostics
approaches. In future work possibility of RUL estimate based
on particle filtering technique will be verified and next level of
PF comparison tests will be performed with more complex
multidimensional non-linear systems .

ACKNOWLEDGMENT

This paper was supported by Honeywell, spol s r.o. – HTS
CZ o.z., Aerospace division, Condition Based Maintenance
group. Author declares that the pieces of information herein
published are solely the result of his personal research and do
not reflect the views, attitudes and intentions of Honeywell.

I would like to thank to my consultants – associated
professors Ludvik Bejcek and Petr Benes from Brno University
of Technology for their valuable comments and support. This
paper was prepared as a part of the author’s PhD thesis related
to Technical Prognostics Methods Applicable to Embedded
Systems.

REFERENCES
[1] ARULAMPALAM, M.S.; MASKELL, S.; GORDON, N.; CLAPP, T.;

A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking. IEEE Transactions on Signal Processing, Volume: 50, Issue: 2.
February 2002. Page(s): 174 – 188, ISSN : 1053-587X.

[2] BAAR-SHALOM, Y.; LI RONG X.; KIRUBARAJAN T.; Estimation
with Applications to Tracking and Navigation. Theory Algorithms and
Software. John Willey & Sons, NJ. 2001. ISBN 0-471-41655-X.

[3] BERGMAN, N.; Recursive Bayesian estimation: Navigation and
tracking applications, Ph.D. dissertation, Linköping Univ., Linköping,
Sweden,1999, Dissertation No: 579, Pages

[4] CHENA, L.; LEEB, CH.; BUDHIRAJAB, A.; MEHRAA, R. K.PFLib -
An Object Oriented MATLAB Toolbox for Particle Filtering. User
Manual. <http://www.stat.colostate.edu/~chihoon/paper-6567-25-
revised.pdf> [Retrieved 4/22/.2012]

[5] DOUC, R.; CAPPE, O.; MOULINES, E.; Comparison of Resampling
Schemes for Particle Filtering. Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis (2005), Pages
64-69, ISSN : 1845-5921 Print ISBN: 953-184-089-XCAPPE

[6] SAHA, B., GOEBEL, K.; CHRISTOPHERSON, J.;Comparison of
Prognostic Algorithms for Estimating Remaining Useful Life of
Batteries, Transactions of the Institute of Measurement and Control vol.
31 no. 3-4, June/August 2009. Pages 293-308. ISSN: 0142-3312

[7] VACHTSEVANOS, G.; LEWIS, F.; ROEMER, M.; HESS, A.; WU, B.;
Intelligent Fault Diagnosis and Prognosis for Engineering Systems. John
Wiley & Sons, Inc. New Jersey, 2006. Pages 434. ISBN:978-0-471-
72999-0.

[8] WELCH, G; BISHOP, G.; An Introduction To The Kalman Filter.
Online Publication. <http://clubs.enscachan.fr/
krobot/old/data/positionnement/kalman.pdf> [retrieved: 4/22/2012]

