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Abstract— Particle Filtering (PF) technique is functional
approach for tracking application, navigation problem and in
non-linear non-Gaussian system estimation problem.Technical
diagnosis and prognosis is another promising area hvere PF is
getting into foreground especially for Remaining Usful Life
(RUL) estimation and potential fault prediction. The main reason
is that PF could handle different types of noisesral can handle
measurement uncertainties, which are typically conected to
problem of real degradation estimation. Even PF haglifferent
kind of filtering method and re-sampling algorithms there is still
only limited number of real comparisons availablem the state-of-
the art literature, especially from the point of root mean square
error and computational demandingness. Main aim othis paper
is to present different type of PF implementation ad compare
those on simple system simulation. At the same timan object
oriented MATLAB Toolbox for Particle Filtering developed by
Scientific Systems Company Inc. and University of bith
Carolina is introduced. This toolbox covers the gapn limited
number of real, configurable and robust PF implemetation
available to broader pool of scientists and engine

Keywords — particle filtering framewok, particle filtering
toolbox, technical prognosis, root mean square errpresampling
technique, computational profiler

. INTRODUCTION

Fault or fault indicator prediction is a procesgshwhigh
uncertainty and it has been proven that Bayesidmason
techniques provides framework which can deal witlths
uncertainties [7], consequently it is not surpigsitmat those
techniques are finding application domains in maehy fault
diagnosis and prognosis of the remaining usefeldifa failing
component/subsystem.

Bayesian estimation with particle filters is altatime to
Kalman filters for estimating the posteriori in E&jan
framework model not limited by either linearity @auss noise
assumption. They are also known as sequential MGatdo
simulation methods and are particularly useful $guations
where the posterior distribution is multivariatedaar non-
standard [5]. Particle filters are methods basegaint mass
(or “particle”) representations of probability déies, which
can be applied to any state-space model and widnkrglize
the traditional Kalman filtering methods. Severalriants of
the patrticle filter such as Sequential ImportaneesBmpling
(SIR), Adaptive Sample Importance Re-sampling (AS4Rd
Regularized Particle Filter (RPF) exists within &ngric

framework of the sequential importance sampling S]SI
algorithm [1]. In other wording patrticle filteririg a technique
for implementing recursive Bayesian filter by Mon@arlo
sampling. The main idea is to represent the pastdansity by
a set of random particles with associated weigbstimate is
computed based on these samples and weights. |@dittErs
use weighted set of samples (particles) for appmating the
filtering distributions. See summarized list of RBvantages
and disadvantages as per [1], [2] and [3].

PF Advantages:
< Applicable even to non-linear systems
e Adaptive focusing on probable regions of state-
space
e Working for non-Gaussian noise
< Ability to represent arbitrary densities
e« The framework allows for including multiple
models (tracking maneuvering targets)
PF Disadvantages:
« Difficult to determine optimal number of particles
« High computational complexity (depending on
number of system states)
¢ Number of particles increase with increasing
model dimension

e Potential problems: degeneracy and loss of
diversity
e« The choice of importance density is the most
important
PF usage for purpose of trajectory estimate was
demonstrated in [2]. Battery degradation trackingd a

remaining useful life prediction based on partifiéering
method has been demonstrated in [4]. There are roHrer
areas, where we can find deployment of this poweshd
robust approach.

Il.  PARTICLE FILTERING ALGORITHMS

A dynamic system could be described as state sequen
represented by Markov random process. State equ@iguite
commonly available but equations are collected ffdj[7]:

X = fe(Xp-1, W) 1)

Wherexis state vector at time instautf, is state transition
function, oy is process noise with known distribution.
Observation equation:



Vi = he (x4, v1) (2
Whereyyis observations at time instakth, is observation

B. Sample Importance Resampling (S R) Filter
As the importance sampling density for the SIRefilts

function, v, is observation noise with known distribution. The independent on measurement, the state space irexpl

main Bayesian framework objective is to estimat&nomvn
statex,, based on a sequence of observatignk=0,1. In other
wording find posterior distribution:

P(X0:|¥1:1) 3)

The importance normalized weightg" are approximations
to the relative posterior probabilities of the s such that:

P
ff(xk) *p(Xp|You)dxy = Z wi * f (x}'{),
i=1

Yowi=1 (4)
A common problem with the SIS particle filter iseth
degeneracy phenomenon, where after a few iterateh$ut
one particle will have negligible weight [1]. Theig a way
how suitable measure degeneracy of weights. Aectiie
sample size approach has been introduced in [#sdmated
effective sample sizéV,;, is defined as:

- 1

Nerr = 50—
eff 2{’:1(W}(cl))2

(®)

WhereN,, < P indicates severe particles degeneracy. Re

sampling is used to avoid whenever severe padietgneracy

without any knowledge of the observations [1]. Efiere, this
filter can be inefficient and is sensitive to oertti. Furthermore,
as re-sampling is applied to each iteration, tkis cesult in
rapid loss of diversity in particles. However, t88R method
does have the advantage that the importance weaghtsasily
evaluated and that the importance density can Isilyea
sampled [3] .

[{xfc, Wlic}liv=1] = SIR[{xfc—l'Wli—l}év=1'yk]
e FORi=1:N
o] Draw: x,ﬁ") ~p(X|X)-1)
0 Calculate: w,gi) =p(VilXk-1)
« END FOR
+ Calculatetotal weight: W = Zivzlw,i
e FORi=1:N

(7)
e D) W
0  Normalize: w,” = —%
w
« ENDFOR
¢« RESAMPLE using algorithm
0 [{x;c' Wi, _}{V=1]‘= ’
RESAMPLE [{Xf{_l, Wli—1}§v=1'3’k]

is indicated byV,;; < P, the main goal as mentioned above isC- Regularized Particle Filter

avoiding cases in which all but one of the importaweights
are close to zero, in other wording the basic idéas to
eliminate particles that have small weights anddous on
particles with large weights [7]. See next sectionigh

description of different particle algorithms implentation and
its sequence steps.

A. Generic Particle Filter

Generic particle filter represents implementatiovhich
includes the observations into the proposal dendityis is
basis implementation of SIS filter [1].

[{x;.c'wli}évzl] = GPF[{x}'{_l, Wlfc—1}ﬁv=1'J’k]

e FORi=1:N

o  Draw: x{” ~ p(xy|xx_1)

o Calculate: w,gi) = p(Ug|Xr_1)
« END FOR
+ Calculatetotal weight: W = Z?’: Wik
 FORi=1:N

)
Wi

w

(6)

0  Normalize: w,ﬁ” =
« ENDFOR
+ Calculate Ngf
* IFNgs < Ninreshota
0 RESAMPLE using algorithm
0 [{x;c' Wi, _}?’=1]’ ‘
RESAMPLE [{x}_1, wi_} 1, w]

« ENDIF

Regularized particle filter (RPF) implementatiorcdees on
avoiding the problem when all particles will coli&pto a single
point within a specified time period [3]. The RRHdentical to
the SIR filter, except for the re-sampling stage.

[{x;.(' Wli}?]=1] = RPF[{x;.c—l'Wli—l}?;l'yk]
« FORi=1:N
o  Draw: x{” ~ p(xy|xk_r)
0 Calculate: W,Ei) =p(YVi|Xk-1)
« END FOR
+ Calculatetotal weight: W = Zf’; wi
« FORi=1:N

o] Normalize: w
« ENDFOR
 Calculate N,
*  IF N < Ninresnota
o Calculate Empirical covariance
matrix S.of {xt, wi}¥,
o Compute D, D% = S,
0 Resampleusing
i i N
[{xk' Wi, _}i=1]
. : N
RESAMPLE [{x_, wic_1}; 7]
o0 FORi=1:Ns
= Drawel ~K
from Epachnikov
Kernel

= X=X+

) ®
0 _ Wi
ke w

(8)




hopr. Dy. €' of Scientific Systems Company Inc. and UniversifyNorth

o END FOR Carolina at Chapel Hill, developed under a Unitéates Army

« ENDIF Small Business Technology Transfer (STTR) projeailed

“Advanced Computational Algorithms for Nonlineadt&iing

for Real Time Environment". Toolbox could be usettier
D. Auxiliary Sampling Importance Resampling GNU License, which is followed in this paper. The

ASIR filter is a variant of the standard SIR filtdhis fiter ~ implementation of a filtering algorithm and its uswe
can be derived from the SIS framework by introdgcan Separated by an object oriented approach. Majariétigns and
importance denSiFW(xk'il}’Lk), which samples the pair options have been implemented by authors [4] fahgly:

{xt, i/}, wherei/ refers to the index of the particle/at- 1. «  Simple Particle Filter
Algorithm steps are defined as per [1]:

[{x;c'wli}évzl] = ASIR[{x;c—pWIi—ﬂIiV:pZ)’k]

* FORi=1:N;g
o Calculate: uj + Extended Kalman Filter,
o Calculate:

* Auxiliary Particle Filter

* Regularized Particle Filter,

® ) ] Resampling schemes includes - None, Simple
w,” = q(ily1p). . 0V lug) wi_y (Multinomial), Residual and Systematic. Other ealali
« END FOR parameter choices include sampling, frequency, mundf
. Calculatetotal weight: W = Eiv:sl wi particles, and specifation of Jacobians for EKFdsee
* FORi=1:Ns A. Comparison of PF algorithms
Normalize: w® — w_,@ As a part of particle filter verification and famaitization
0 ormalize: wy. ™ ==, with new filtering technique a simple one dimensiosystem
« ENDFOR model has been selected in a form:
. . N
* Resampleusing |{xk, Wi, —}._ | = 25%x),_
pe sing (v} 3”1] ©) X = 05 ey +y
RESAMPLE [{xf_y, wi_.}; | ]
.+ FORi=1:N; Y= (1)
) i — . . . . .
o Draw x” ~q(xc|i), yi) = Simulation has been performed with following vades
p(x |x,i_1]) with Gauss Noise Distribution:
o  Assignweigth: W}gi) - P(J'k_lxlf’) « Different Filter Types (Simple, Auxiliary,
Pkluy) Regularized, EKF)

+ ENDFOR . . T

. Calculatetotal weight: W = 3 No i « Different parameters» process noise distribution
=1 Wk mean, variance

© FORI=1:R o «  Different Re-sampling

o Normalize w” = WW"

+ ENDFOR

» Different number of particles

A Value Tracking for Systern with Gauss Noise
16 T T

Criginal State

E. Extended Kalman Filter ul m Simple PF |
|

Even it is not particle filter we should mentiont&xded | ! | |
Kalman filter (EKF) as an option for non-linear @widn. EKF I JA\ | 1 ﬂ ol f S
is the nonlinear version of the Kalman filter whilthearizes orlh ‘ /\ N\ N |1 ( ‘M Lo
about an estimate of the current mean and covarideiKF is 1R L || /\ / \
considered as default estimation technique anduite gvell “ | o
known. See more detailed description in [8]

Value x
©

.  IMPLEMENTATION AND VERIFICATION s ‘ !

In previous section detailed background PF. Matheaio
not offer any standard toolbox for particle filteeven there is

System Identification Toolbox with Kalman filteradiARMA o a: as 4
models. There is only limited number of real exaaspbf PF Simuion siepk

implementation but no solid and mature approachterAf

detailed research the PFLib - An Object Oriented TMAB Figure 1. Filtering of a system represented by Equation Zifimple SIR,

Toolbox for Particle Filtering developed by [4] weslected for N:=60, Residual re-sampling, Resample every 2 samples

all simulation and system verification. This toothis product



Ewolution of the state density for SIR

Probability [-]
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[ o Simulation Step [
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Figure 2. Evolution of State Density Represented by PartifdeSIR filter,
Ns=60, Residual re-sampling, Resample every 2 ssmpl

We can see in previous figures simulation resulid a
evolution of particles state desnity during simiolat Method
of comparing RMSE has been chosen to numericaltypewe
each PF methods and it ability to track internalest. See next
figure 3, with RMSE evolution during simulation.

A Value Tracking Eror Plot with RMS
12 T

Simple PF @ RMS: 1.4187
AUXPF @RMS: 14576
———-Regularized PF @ RMS:1.3635 [|
——~-EKF-PF @RMS:14297
EKF @RMS:1.3247

Value x

100 150
Simulation step k

Figure 3. RMSE of Estimation for Each PF algorithms one patér run

In next table you can see comparison of root meaiare
error (RMSE) for different number of particles (EKB
mentioned just for completeness). RMSE or someticadied

as a Root Mean Square Deviation (RMSD) is quite rmom
metric for comparison estimators and is usuallyneef as:

2
2Iiv=1(x1,i— xz,i)

RMSE = (I1-2)

N
Wherex, ; is simulated system state amng is estimated
value.

TABLE I. COMPARISON OFDIFFERENTIMPLEMENTATION OF PARTICLE
FILTERS
Filter Type Simple PF | AUXPF | Regularized EKF
RMSE[-] RMSE[-] PF RMSE[-]
RMSE[-]
Number of
Particles
Residual resampling every 3steps
N=15 1.9613 1.8417 1.5772
N=30 1.4558 1.4431 1.3601 1.3247
N=60 1.9238 1.4217 1.3415
N=120 1.7281 1.7168 1.4394
Average 1.7673 1.6058 1.4296 1.3247
Residual resampling every 1 step
Ne=15 1.7119 2.4440 1.2842 1.3247
N=30 14777 1.8479 1.4589 )
N=60 1.5525 10.695 1.9160
N=120 1.7372 1.9304 1.7282 1.3247
Average 1.6198 4.2293 1.5968 1.3247
Simple resampling every 3steps
Ne=15 2.4283 2.6377 1.2887
N=30 1.6694 1.2549 1.7117
N=60 1.7376 1.3906 1.8065 1.3247
N=120 1.8542 1.9901 1.6934
1.9224 1.8183 1.6251 1.3247
Systematic resampling every 1step
Ne=15 1.2458 1.3018 1.5780
N=30 1.372¢ 1.563¢ 2.194¢
Ns=60 1.5984 1.3867 1.3793 1.3247
N=120 1.6572 1.0777 1.3531
1.4686 1.3324 1.6262 1.3247
Comparison Of Different Resampling Methods
Simple PF AUXPF Regularized PF
= Systematic (1step) ®Simple (3 steps) Residual {1step) m Residual { 3steps )

Figure 4. Comparison of RMSE for different resampling method

MATLAB software provides the Profiler functionaljty
which enables to evaluate execution time of eagordhms
including its sub-functions. This tool is quite piel in
algorithms  development and optimizing. It provides
information not only about execution time but etle® number
of calls. See results of profiling for differentrpele filters



TABLE I1. COMPARISON OFEXECUTION TIME OF DIFFERENT PARTICLE
FILTER ALGORITHMS (MEASURED TIME FOR 150STEPY

Filter Type Simple PF | AUX PF Regulariz EKF
Exec Exec ed PF Exec
Time[ms] | Time[ms] Exec Time[ms
Number of Time[ms] ]
Particles
Residual resampling every 3steps
N=15 1.3 2.8 1.4 0.1
N=30 2.8 5.7 2.6 0.1
N=60 5.7 9.7 5.5 0.1
N.=120 11.0 19.5 11.3 0.1
Avg per part. 0.093 0.168 0.092 0.002
Residual resampling every 1 step
N=15 1.6 2.7 1.6 0.1
N=30 2.t 5.€ 2.3 0.1
N=60 7.9 8.3 7.5 0.0
N.=120 10.8 20.2 10.7 0.2
Avg per part. 0.102 0.164 0.098 0.002
Simple resampling every 3steps
Ne=1E5 1.6 2.4 1.4 0.1
Ne=3C 2.€ 5.4 2.€ 0.1
N=60 5.3 10.0 4.8 0.1
N.=120 115 19.6 11.5 0.1
Avg per part. 0.094 0.166 0.090 0.002
Systematic resampling every 1 steps
N=1E5 1.7 2.2 2.C 0.1
Ne=3C 3.C 5.2 2.€ 0.2
N=60 4.3 12.8 4.3 0.1
N.=120 11.4 19.4 11.7 0.1
Avg per part. 0.090 0.176 0.091 0.003

state estimates takes several steps, which cause RMSE.
It has been verified than in longer simulation the results
nearly overcomes EKF.

IV. CONCLUSION

Different types of particle filters are presentertluding
detailed description of algorithms. Simple, Reguk and
Auxiliary particle filters are tested together witvell known
and established Extended Kalman Filter. Based emabults it
is indicated that EKF still overcomes PF from exegutime
point of view in case of Gaussian noise. An objtiénted
MATLAB Toolbox for Particle Filtering has been vieeid and
it is proven that implementation of particle fiitey toolbox is
ready for use and could be utilized not only foogmostics
approaches. In future work possibility of RUL esitm based
on particle filtering technique will be verified dmext level of
PF comparison tests will be performed with more glex
multidimensional non-linear systems .
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As we can see from results in Table Il the mostetim to Technical Prognostics Methods Applicable to Edueel
consuming execution is in case of implemented AUXSystems.

algorithm. The rest of the execution seems to bpgtionally
dependent on number of particles as expected amnthe

Final Particle Filter Comparison
(Mormalized RMSE and Execution time)

AUX PF Residual [ 1 step)
AUX PF Simple (3 steps)
AUX PF Residual { 3steps )
AUX PF Systematic (1 step)

|

|

|

Simple PF Simple (3 steps)
Simple PF Residual (...

mRMSE

I

HExecution

Simple PF Residual (1 step)

Regularized PF Residual {..

Regularized PF Systematic..

I

Regularized PF Simple (3..

Simple PF Systematic (1..

Regularized PF Residual [... |
EKF

ﬂ
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Figure 5. Final Particle Comparison considering time exeecuéiod RMSE
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