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Abstract— Particle Filtering (PF) technique is functional 
approach for tracking application, navigation problem and in 
non-linear non-Gaussian system estimation problem.  Technical 
diagnosis and prognosis is another promising area where PF is 
getting into foreground especially for Remaining Useful Life 
(RUL) estimation and potential fault prediction. The main reason 
is that PF could handle different types of noises and can handle 
measurement uncertainties, which are typically connected to 
problem of real degradation estimation. Even PF has different 
kind of filtering method and re-sampling algorithms there is still 
only limited number of real comparisons available in the state-of-
the art literature, especially from the point of root mean square 
error and computational demandingness.  Main aim of this paper 
is to present different type of PF implementation and compare 
those on simple system simulation. At the same time an object 
oriented MATLAB Toolbox for Particle Filtering deve loped by 
Scientific Systems Company Inc. and University of North 
Carolina is introduced. This toolbox covers the gap in limited 
number of real, configurable and robust PF implementation 
available to broader pool of scientists and engineers.  

Keywords — particle filtering framewok, particle filtering 
toolbox, technical prognosis, root mean square error, resampling 
technique, computational profiler  

I.  INTRODUCTION 

Fault or fault indicator prediction is a process with high 
uncertainty and it has been proven that Bayesian estimation 
techniques provides framework which can deal with such 
uncertainties [7], consequently it is not surprising that those 
techniques are finding application domains in machinery fault 
diagnosis and prognosis of the remaining useful life of a failing 
component/subsystem.  

Bayesian estimation with particle filters is alternative to 
Kalman filters for estimating the posteriori in Bayesian 
framework model not limited by either linearity or Gauss noise 
assumption. They are also known as sequential Monte Carlo 
simulation methods and are particularly useful for situations 
where the posterior distribution is multivariate and or non-
standard [5]. Particle filters are methods based on point mass 
(or “particle”) representations of probability densities, which 
can be applied to any state-space model and which generalize 
the traditional Kalman filtering methods. Several variants of 
the particle filter such as Sequential Importance Re-sampling 
(SIR), Adaptive Sample Importance Re-sampling (ASIR) and 
Regularized Particle Filter (RPF) exists within a generic 

framework of the sequential importance sampling (SIS) 
algorithm [1].  In other wording particle filtering is a technique 
for implementing recursive Bayesian filter by Monte Carlo 
sampling. The main idea is to represent the posterior density by 
a set of random particles with associated weights. Estimate is 
computed based on these samples and weights. Particle filters 
use weighted set of samples (particles) for approximating the 
filtering distributions. See summarized list of PF advantages 
and disadvantages as per [1], [2] and [3].    

PF Advantages:  
• Applicable even to non-linear systems 
• Adaptive focusing on probable regions of state-

space 
• Working for non-Gaussian noise 
• Ability to represent arbitrary densities 
• The framework allows for including multiple 

models (tracking maneuvering targets) 
PF Disadvantages: 

• Difficult to determine optimal number of particles 
• High computational complexity (depending on 

number of system states) 
• Number of particles increase with increasing 

model dimension 
• Potential problems: degeneracy and loss of 

diversity 
• The choice of importance density is the most 

important 
PF usage for purpose of trajectory estimate was 

demonstrated in [2]. Battery degradation tracking and 
remaining useful life prediction based on particle filtering 
method has been demonstrated in [4]. There are many other 
areas, where we can find deployment of this powerful and 
robust approach. 

II. PARTICLE FILTERING ALGORITHMS 

A dynamic system could be described as state sequence 
represented by Markov random process. State equation (is quite 
commonly available but equations are collected from [1], [7]:  
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Where xk is state vector at time instant k, fx is state transition 
function, ωk is process noise with known distribution. 
Observation equation: 
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� � �����, ���                                      (2) 
Where yk is observations at time instant k, hx is observation 

function, vk is observation noise with known distribution. The 
main Bayesian framework objective is to estimate unknown 
state xk, based on a sequence of observations yk, k=0,1. In other 
wording find posterior distribution: 

����:�|�:��                                            (3) 

The importance normalized weights wk
(i) are approximations 

to the relative posterior probabilities of the particles such that: 
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A common problem with the SIS particle filter is the 
degeneracy phenomenon, where after a few iterations, all but 
one particle will have negligible weight [1]. There is a way 
how suitable measure degeneracy of weights.  An effective 
sample size approach has been introduced in [3] an estimated 
effective sample size  &'(() is defined as: 

&'(() �  #
∑ �+,

�-��./-01
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Where &'(()  2 3 indicates severe particles degeneracy. Re-
sampling is used to avoid whenever severe particle degeneracy 
is indicated by &'(()  2 3, the main goal as mentioned above is 
avoiding cases in which all but one of the importance weights 
are close to zero, in other wording the basic idea of is to 
eliminate particles that have small weights and to focus on 
particles with large weights [7]. See next sections with 
description of different particle algorithms implementation and 
its sequence steps. 

A. Generic Particle Filter  

Generic particle filter represents implementation, which 
includes the observations into the proposal density. This is 
basis implementation of SIS filter [1]. 
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• FOR i = 1 : N 

o Draw: ��
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o Calculate: ��
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• END FOR 

• Calculate total weight: = � $ ���
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• FOR i = 1 : N 

o Normalize: ��
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• END FOR 
• Calculate  &'(()  
• IF &'(()  ? &@AB'CADEF 

o RESAMPLE using algorithm 
o 45��� , ��� , G6�"#7 8 �
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• END IF 
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B. Sample Importance Resampling (SIR) Filter 

As the importance sampling density for the SIR filter is 
independent on measurement, the state space is explored 
without any knowledge of the observations [1]. Therefore, this 
filter can be inefficient and is sensitive to outliers. Furthermore, 
as re-sampling is applied to each iteration, this can result in 
rapid loss of diversity in particles. However, the SIR method 
does have the advantage that the importance weights are easily 
evaluated and that the importance density can be easily 
sampled [3] . 
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• Calculate total weight: = � $ ���
7
�"#  

• FOR i = 1 : N 
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• END FOR 
• RESAMPLE using algorithm 

o 45��� , ��� , G6�"#7 8 �
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C. Regularized Particle Filter 

Regularized particle filter (RPF) implementation focuses on 
avoiding the problem when all particles will collapse to a single 
point within a specified time period [3]. The RPF is identical to 
the SIR filter, except for the re-sampling stage. 
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• FOR i = 1 : Ns 

o Draw: ��
��� ~ ����|���#� 

o Calculate: ��
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• END FOR 

• Calculate total weight: = � $ ���
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• FOR i = 1 : Ns 

o Normalize: ��
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• END FOR 
• Calculate  &'(()  
• IF &'(()  ? &@AB'CADEF 

o Calculate Empirical covariance 
matrix Sk of 5��� , ��� 6�"#7  

o Compute  P�P�Q �  J� 
o Resample using 
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o FOR i = 1 : Ns 
� Draw W�  ~ X 

from Epachnikov 
Kernel 
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(8) 
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o END FOR 

• END IF 
 

D. Auxiliary Sampling Importance Resampling 

ASIR filter is a variant of the standard SIR filter. This filter 
can be derived from the SIS framework by introducing an 
importance density \���, ]|#:�� , which samples the pair 
5��� , ]^6^"#7 , where ]^ refers to the index of the particle at _ G 1. 
Algorithm steps are defined as per [1]: 

45��� , ��� 6�"#7 8 � KJNH45���#� , ���#� 6�"#7 , �8 
• FOR i = 1 : Ns 

o Calculate: `��   
o Calculate: 
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• END FOR 

• Calculate total weight: = � $ ���
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• END FOR 
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• FOR i = 1 : Ns 
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• END FOR 
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• END FOR 
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E. Extended Kalman Filter 

Even it is not particle filter we should mention Extended 
Kalman filter (EKF) as an option for non-linear solution. EKF 
is the nonlinear version of the Kalman filter which linearizes 
about an estimate of the current mean and covariance. EKF is 
considered as default estimation technique and is quite well 
known. See more detailed description in [8] 

III.  IMPLEMENTATION  AND VERIFICATION 

In previous section detailed background PF. Mathworks do 
not offer any standard toolbox for particle filters, even there is 
System Identification Toolbox with Kalman filters and ARMA 
models. There is only limited number of real examples of PF 
implementation but no solid and mature approach. After 
detailed research the PFLib - An Object Oriented MATLAB 
Toolbox for Particle Filtering developed by [4] was selected for 
all simulation and system verification. This toolbox is product 

of Scientific Systems Company Inc. and University of North 
Carolina at Chapel Hill, developed under a United States Army 
Small Business Technology Transfer (STTR) project called 
“Advanced Computational Algorithms for Nonlinear Filtering 
for Real Time Environment". Toolbox could be used under 
GNU License, which is followed in this paper. The 
implementation of a filtering algorithm and its use are 
separated by an object oriented approach. Major algorithms and 
options have been implemented by authors [4] followingly:  

• Simple Particle Filter 

• Auxiliary Particle Filter 

• Regularized Particle Filter,  

• Extended Kalman Filter, 

Resampling schemes includes - None, Simple 
(Multinomial), Residual and Systematic. Other available 
parameter choices include sampling, frequency, number of 
particles, and specifation of Jacobians for EKF needs. 

A. Comparison of PF algorithms  

As a part of particle filter verification and familiarization 
with new filtering technique a simple one dimensional system 
model has been selected in a form:  

                                 �� �  0.5 ∗ ���# Y jk∗�,l1
#m�,l1.   

�� �  �,.
j�                                             (1) 

Simulation has been performed with following variances 
with Gauss Noise Distribution: 

• Different Filter Types (Simple, Auxiliary, 
Regularized,  EKF) 

• Different parameters ω process noise distribution 
mean, variance 

• Different Re-sampling 

• Different number of particles 

 

Figure 1.  Filtering of a system represented by Equation 2 for simple SIR, 
Ns=60, Residual re-sampling, Resample every 2 samples 
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Figure 2.  Evolution of State Density Represented by Particles for SIR filter, 

Ns=60, Residual re-sampling, Resample every 2 samples 

We can see in previous figures simulation results and 
evolution of particles state desnity during simulation. Method 
of comparing RMSE has been chosen to numerically compare 
each PF methods and it ability to track internal states. See next 
figure 3, with RMSE evolution during simulation. 

 
Figure 3.  RMSE of Estimation for Each PF algorithms one particular run 

In next table you can see comparison of root mean square 
error (RMSE) for different number of particles (EKF is 
mentioned just for completeness). RMSE or sometimes called 

as a Root Mean Square Deviation (RMSD) is quite common 
metric for comparison estimators and is usually defined as: 

HLJI �  n∑ ��1,-� �.,- .o-01
7                                 (III-2)   

Where �#,�  is simulated system state and �j,�  is estimated 
value. 

TABLE I.  COMPARISON OF DIFFERENT IMPLEMENTATION OF PARTICLE 
FILTERS 

Filter Type 
 

Simple PF 
RMSE[-] 

AUX PF 
RMSE[-] 

Regularized 
PF 

RMSE[-] 

EKF 
RMSE[-] 

Number of 
Particles 

 Residual resampling every 3steps 
Ns=15 1.9613 1.8417 1.5772 

1.3247 
 

Ns=30 1.4558 1.4431 1.3601 
Ns=60 1.9238 1.4217 1.3415 
Ns=120 1.7281 1.7168 1.4394 
Average 1.7673 1.6058 1.4296 1.3247 

 Residual resampling every 1 step 
Ns=15 1.7119 2.4440 1.2842 

1.3247 
Ns=30 1.4777 1.8479 1.4589 
Ns=60 1.5525 10.695 1.9160 

1.3247 
Ns=120 1.7372 1.9304 1.7282 
Average 1.6198 4.2293 1.5968 1.3247 

 Simple resampling every 3steps 
Ns=15 2.4283 2.6377 1.2887 

1.3247 
Ns=30 1.6694 1.2549 1.7117 
Ns=60 1.7376 1.3906 1.8065 
Ns=120 1.8542 1.9901 1.6934 

 1.9224 1.8183 1.6251 1.3247 
 Systematic resampling every 1step 

Ns=15 1.2458 1.3018 1.5780 

1.3247 
Ns=30 1.3729 1.5634 2.1945 
Ns=60 1.5984 1.3867 1.3793 
Ns=120 1.6572 1.0777 1.3531 

 1.4686 1.3324 1.6262 1.3247 
 

 
Figure 4.   Comparison of RMSE for different resampling methods  

MATLAB software provides the Profiler functionality, 
which enables to evaluate execution time of each algorithms 
including its sub-functions. This tool is quite helpful in 
algorithms development and optimizing. It provides 
information not only about execution time but even the number 
of calls. See results of profiling for different particle filters 
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TABLE II.  COMPARISON OF EXECUTION TIME OF DIFFERENT PARTICLE 
FILTER ALGORITHMS (MEASURED TIME FOR 150 STEPS) 

Filter Type 
   

Simple PF 
Exec 

Time[ms] 

AUX PF 
Exec 

Time[ms] 

Regulariz
ed PF  
Exec 

Time[ms] 

EKF 
Exec 

Time[ms
] Number of 

Particles 

 Residual resampling every 3steps 
Ns=15 1.3 2.8 1.4 0.1 
Ns=30 2.8 5.7 2.6 0.1 
Ns=60 5.7 9.7 5.5 0.1 
Ns=120 11.0 19.5 11.3 0.1 

Avg per part. 0.093 0.168 0.092 0.002 
 Residual resampling every 1 step 

Ns=15 1.6 2.7 1.6 0.1 
Ns=30 2.5 5.9 2.3 0.1 
Ns=60 7.9 8.3 7.5 0.0 
Ns=120 10.8 20.2 10.7 0.2 

Avg per part. 0.102 0.164 0.098 0.002 
 Simple resampling every 3steps 

Ns=15 1.9 2.4 1.4 0.1 
Ns=30 2.6 5.4 2.6 0.1 
Ns=60 5.3 10.0 4.8 0.1 
Ns=120 11.5 19.6 11.5 0.1 

Avg per part. 0.094 0.166 0.090 0.002 
 Systematic resampling every 1 steps 

Ns=15 1.7 2.2 2.0 0.1 
Ns=30 3.0 5.2 2.6 0.3 
Ns=60 4.3 12.8 4.3 0.1 
Ns=120 11.4 19.4 11.7 0.1 

Avg per part. 0.090 0.176 0.091 0.003 
 

As we can see from results in Table II the most time 
consuming execution is in case of implemented AUX 
algorithm. The rest of the execution seems to be proportionally 
dependent on number of particles as expected in theory. 

 
Figure 5.  Final Particle Comparison considering time execution and RMSE 

Just for completeness a testing for Non-Gaussian 
distribution was performed. Gamma distribution (a = 2, b = 1) 
was used for simulation of internal states and the results were 
similar to previous utilizing Gaussian PDF. From embedded 
point of view there is a room for algorithms optimization. Non 
Particle approach EKF is still promising and is considered as a 
default approach. What has to be mentioned in support of 
promising PF is fact that initialization portion of the internal 

state estimates takes several steps, which cause worse RMSE. 
It has been verified than in longer simulation run the results 
nearly overcomes EKF.  

IV. CONCLUSION 

Different types of particle filters are presented including 
detailed description of algorithms. Simple, Regularized and 
Auxiliary particle filters are tested together with well known 
and established Extended Kalman Filter. Based on the results it 
is indicated that EKF still overcomes PF from execution time 
point of view in case of Gaussian noise. An object oriented 
MATLAB Toolbox for Particle Filtering has been verified and 
it is proven that implementation of particle filtering toolbox is 
ready for use and could be utilized not only for prognostics 
approaches. In future work possibility of RUL estimate based 
on particle filtering technique will be verified and next level of 
PF comparison tests will be performed with more complex 
multidimensional non-linear systems .  

ACKNOWLEDGMENT  

This paper was supported by Honeywell, spol s r.o. – HTS 
CZ o.z., Aerospace division, Condition Based Maintenance 
group. Author declares that the pieces of information herein 
published are solely the result of his personal research and do 
not reflect the views, attitudes and intentions of Honeywell. 

I would like to thank to my consultants – associated 
professors Ludvik Bejcek and Petr Benes from Brno University 
of Technology for their valuable comments and support. This 
paper was prepared as a part of the author’s PhD thesis related 
to Technical Prognostics Methods Applicable to Embedded 
Systems. 

REFERENCES 
[1] ARULAMPALAM, M.S.; MASKELL, S.; GORDON, N.; CLAPP, T.; 

A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian 
tracking. IEEE Transactions on Signal Processing, Volume: 50, Issue: 2. 
February 2002. Page(s): 174 – 188, ISSN :  1053-587X. 

[2] BAAR-SHALOM, Y.; LI RONG X.; KIRUBARAJAN T.; Estimation 
with Applications to Tracking and Navigation. Theory Algorithms and 
Software. John Willey & Sons, NJ. 2001. ISBN 0-471-41655-X. 

[3] BERGMAN, N.; Recursive Bayesian estimation: Navigation and 
tracking applications, Ph.D. dissertation, Linköping Univ., Linköping, 
Sweden,1999, Dissertation No: 579, Pages 

[4] CHENA, L.; LEEB, CH.;  BUDHIRAJAB, A.; MEHRAA, R. K.PFLib - 
An Object Oriented MATLAB Toolbox for Particle Filtering. User 
Manual. <http://www.stat.colostate.edu/~chihoon/paper-6567-25-
revised.pdf> [Retrieved 4/22/.2012] 

[5] DOUC, R.; CAPPE, O.; MOULINES, E.; Comparison of Resampling 
Schemes for Particle Filtering. Proceedings of the 4th International 
Symposium on Image and Signal Processing and Analysis (2005), Pages 
64-69, ISSN : 1845-5921 Print ISBN: 953-184-089-XCAPPE 

[6] SAHA, B., GOEBEL, K.; CHRISTOPHERSON, J.;Comparison of 
Prognostic Algorithms for Estimating Remaining Useful Life of 
Batteries, Transactions of the Institute of Measurement and Control vol. 
31 no. 3-4, June/August 2009. Pages  293-308. ISSN: 0142-3312 

[7] VACHTSEVANOS, G.; LEWIS, F.; ROEMER, M.; HESS, A.; WU, B.; 
Intelligent Fault Diagnosis and Prognosis for Engineering Systems. John 
Wiley & Sons, Inc. New Jersey, 2006. Pages 434. ISBN:978-0-471-
72999-0. 

[8] WELCH, G; BISHOP, G.; An Introduction To The Kalman Filter. 
Online Publication. <http://clubs.enscachan.fr/ 
krobot/old/data/positionnement/kalman.pdf> [retrieved: 4/22/2012] 

 


