
 

89 
 

Closed form analytical model of Cross-              
          Beam Resonator and its Verification.  

Vaishali B. Mungurwadi  
 Instrumentation Engineering,  

B.V.B.College of Engineering and Technology, 
Hubli-580 031, 

 Karnataka   
vaishali_bm@bvb.edu 

Uday V.Wali  
E&C Engineering,  

K.L.E.College of Engineering and Technology,  
Belgaum-590 014 

Karnataka 
udaywali@rediffmail.com

 
 

Abstract— The objective of this work is to develop analytical 
solutions for analyzing a static behavior of a new micro-electro-
mechanical (MEMS) resonator called Cross-Beam Resonator in 
terms of its geometry, material properties and the excitation 
voltage. Analytical equations have been developed for the 
determination of natural resonant frequency, electrostatic 
deflection of the beam and the shift in resonant frequency due to 
the bias voltage. Analytical equations are verified for their 
accuracy by simulating the resonator using Intellisuite. It is 
observed that the results of analytical solution compare well with 
those of Intellisuite simulation. However the correction factor has 
been determined by curve fitting to eliminate errors. In this work 
the concept of clamped-clamped beam resonator has been 
extended to cross-beam resonator. For the purpose of analysis 
cross beam is considered as a grid consisting of 4 members called 
arm. Using the theory of matrix analysis of framed structures we 
analyze the structure to find the mechanical stiffness and the 
deflection at the center. 
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I.  INTRODUCTION  
 

Micro-electro-mechanical systems (MEMS) devices due to 
their characteristics can create the miniaturized, low power 
and inexpensive integrated RF filters. Micromechanical 
resonators can be used as a filtering element in electronics 
because of their vibrational transfer function. A vibrating 
beam will deflect maximum at its natural frequency than at 
any other frequency, giving rise to a resonant peak. This 
property in the transfer function of a micro-resonator leads to 
its use as a filter. Electro-statically actuated resonant micro-
electro-mechanical systems (MEMS) devices have gained 
significant importance due to their geometric simplicity, broad 
applicability and well understood phenomenon. Several works 
[1], [2], [3], [4]  have demonstrated filters and oscillators 
using capacitively transduced poly-silicon surface micro-
machined vibrating resonators of various structures namely 
clamped-clamped beam, wine-glass disk, comb-driven folded 
flexure, crab-leg structure etc. Clamped-clamped beam 
resonator has been demonstrated previously [1], [2] achieving 

resonant frequency in low-frequency (LF) range. Using 
clamped-clamped beam a high-frequency (HF) resonator can 
be achieved by reducing the length but at the cost of voltage 
sensitivity which in turn decreases tune-ability. In this work 
the concept of clamped-clamped beam has been extended to 
cross-beam which achieves the resonant frequency in HF 
range at the same time maintaining good sensitivity to voltage 
resulting in good tune-ability. For the purpose of analysis 
cross beam resonator structure is considered as a grid 
consisting of 4 members called arm (all have same dimensions 
and material properties) that are rigidly joined at point E as 
shown in figure 1.   

 
 

Figure 1.  Cross-beam viewed as a grid 

II. NATURAL RESONANT FREQUENCY OF CROSS-
BEAM 

Natural resonant frequency is governed by expression [5] 
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Effective mass Meff is calculated for cross beam from 
kinetics and mechanical Stiffness (spring constant) of the cross 
beam Km is obtained from the stiffness matrix of the grid. For 
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cross-beam structure, Meff = 0.4063m where M is the actual 
mass of the beam. 

III. STATIC ANALYSIS 

A. Displacement at the centre  
Displacement at the centre of the beam in vertical direction 

is expressed as  

 )A(ASy(L DLD
1
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S is a stiffness Matrix, vector AD represents actions in the 
beam corresponding to the unknown displacement which is a 
null vector as there are no concentrated forces or couples at 
the joint „E‟, vector ADL represents restraint actions due to 
force Fu in vertical direction expressed as  





















0
0
1

L2FA effuDL 

    Substituting stiffness matrix, vector AD and vector ADL in 
(3) gives an expression for displacement at the centre y(Leff) as 
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Fu is the force per unit length expressed as 
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B. Displacement at any point on the beam 
 
Equation for the displacement of the beam element at a 
distance „x‟ from fixed end is derived in this section. The cross 
beam shown in figure 1 is modeled as four fixed-guided 
beams. Figure 2(b) shows one fixed-guided beam with 
uniformly distributed lateral force, Fu , applied to the surface. 
For fixed-guided beams the displacement of the beam element 
y(x) at a distance „x‟ from fixed end of the beam is expressed 

as [6] 
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Fu is the line force per unit length of the beam. From 

equations (6) and (7), y(x) can be expressed as  
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Since the desired variable y(x) appears on both sides of 
equation (8) it must be solved in an iterative method. 
Alternately we obtain a closed form solution which involves 
solving a cubic polynomial in terms of y(x) as explained. 
Expression (8) can be written as  
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Discriminant of cubic polynomial (9) is  

 23
0 k27k4d  

k′ being the function of geometric dimensions and x for 
every possible combination of these variables and d0  it has 
been observed that  
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This condition ensures that there is only one real root and 
two complex roots. The real root being the solution y(x) it can 
be expressed as 
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All the arms of the beam are symmetrical in shape and 

dimension, and force is uniformly distributed throughout the 
cross beam. Therefore the equation (10) holds good for the 
displacement of the elements of any arm at a distance „x‟ from 
the fixed end up to Leff . 
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Figure 2.  a) Top view of Cross-beam. b) Front view of one arm in a) 

 

IV. SHIFT IN RESONANT FREQUENCY 
There may be manufacturing variations during lithography 

or etching process which may vary the geometric sizes 
including the length, width and thickness of the beam, from 
design values. This in turn causes variation in resonant 
frequency and pass-band distortion in filters using these 
resonators. A well known phenomenon of electrical spring 
softening due to application of dc bias voltage, Vdc, generating 
electrical spring constant Ke is exploited to compensate the 
effects of manufacturing variations. Effectively the electrical 
spring constant Ke that varies with Vdc subtracts from the 
mechanical spring constant of the resonator producing an 
effective spring constant Keff=Km-Ke. This in turn lowers the 
resonance frequency according to the expression 
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where Km and  Meff denote values at a particular location (the 
beam center location). Electrical spring stiffness for cantilever 
beam is obtained by considering the lumped model of the 

beam as shown in figure 3(a)   where Keq is the equivalent 
spring constant and it is the parallel combination of effective 
spring constant of each component (arms and the center plate) 
of the cross beam as shown in the figure 3(b) .  Because of 
spring softening as explained earlier the effective spring 
constants can be expressed as 
Keff1=Km1-Ke1, Keff2=Km2-Ke2 , Keff3= Km3-Ke3  ,Keff4 = Km4-Ke4  , 
Keff5= Km5-Ke5. 
Hence Keq is expressed as 
 
                  Keq = Keff1 + Keff2 + Keff3 + Keff4 + Keff5              (12) 

 
Keff1 , Keff2 , Keff3 and Keff4  are the effective spring constants 

of the four arms and are equal since the arms are symmetrical 
in dimension and have the same material properties. Keff5 is the 
effective spring constant of the center plate.  

 
(a) 

 
(b) 

 
Figure 3.   a)Lumped model of the Cross-beam   b) Parallel combination of 

the effective spring constants of the arms and  the center plate. 

 

Let Km= Km1+Km2+ Km3+ Km4+Km5 and we know Ke-arm= 
Ke1= Ke2= Ke3 = Ke4   equation (15) reduces to 

Keq = Km- (4×Ke-arm + Ke-plate).   Therefore                              

                    Ke = 4×Ke-arm +  Ke-plate                                (13)  

 

The problem of deriving an expression for Ke is simplified 
to deriving equations for electric spring constants Ke-arm and 
Ke-plate of more simple structures arm and plate respectively. 
Consider one arm of the cross-beam shown in figure 2(b). 
Electrode-to-resonator gap capacitance is dependent very 
strongly upon the electrode-to-resonator gap spacing, which is 
in turn a function of the distance „x‟ from the anchor. Basic 
expression of Ke is  
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y(x) is deflection at „x’ and d0 is initial gap when there is 
no deflection. Since force is variable throughout the beam we 
consider an infinitesimal force at a distance „x‟ from anchor Fe 
(x). Therefore Fe (x) is expressed as 
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dA  is the infinitesimal area at „x‟ i.e. xwdA  . 

Differentiating expression (16) with respect to y gives  
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Ke expressed in equation (17) is electrical spring constant 
at a particular distance „x‟ from anchor.  Integrating this 
equation from 0 to Leff  gives Ke-arm .  
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To obtain electrical spring  constant  of  the center plate Ke-

plate we assume that the deflection of every point on the center 
plate is equal with a negligible difference. This leads to a 
simple expression for Ke-plate  as 
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The total  Ke   is  the sum of  four times equation (18) and  
equation  (19) expressed as 
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V. RESULTS AND DISCUSSIONS 
In this section we have compared the results of analytical 

solution with those of the Intellisuite simulation to verify the 
accuracy of analytical models. Table I presents the resonant 
frequency variations for three different arm lengths of the 
beam. Figure 4 presents the deflection at the center of the 
beam for different voltages obtained by analytical model and 
Intellsuite Simulation. During the process of deflection of the 
beam, the initial uniform force on the beam results in initial 
deflection which is different at every point on the beam.   

 

TABLE I.  RESONANT FREQUENCY FOR DIFFERENT ARM LENGTHS. 

Effective 
Length of the 

arm in 
micrometer 

Resonant 
Freq 

(Simulation 
results) 

Resonant 
Freq 

(Analytical 
results) 

% deviation 
from 

simulated 
values. 

 12  31.279 31.286 0.02237 

 14 22.824 22.838 0.0613 

 16 17.373 17.402 0.166 

 
Deflection of the beam goes on increasing iteratively and 

force goes on building non-uniformly until equilibrium is 
reached. This type of deflection results in non-uniform gap 
d(x) = d0 – y(x) between the beam and the electrode, in turn 
creating a variable force as shown in the figure 5.  At this 
state, force is maximum at the center and minimum near the 
anchors. In our model this effect is not taken into 
consideration during the derivation of analytical equations. 
Instead we assume a piston- 

 
Figure 4.  Vdc vs deflection 

 

 
 

Figure 5.  Cross section view of deflected cross beam 

type movement of the beam towards plate resulting in uniform 
gap. Consequently the uniform force is assumed to be 
developed on the beam. This assumption results in higher 
value of deflection compared to those obtained from 
Intellisuite simulation (y axis in figure 6 is negative).  Plots for 
the shift in the resonant frequency due to variation in the DC 
bias voltage obtained from Intellisuite simulation and 
analytical solutions are shown in figure 6 for three different 
lengths of beam in each case.  
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Figure 6.   Resonant frequency versus Voltage plot obtained from Simulation 
and Analytical models. 

From these plots we draw the inference that the deviation 
in the frequency shift increases for higher voltages, and are 
negligible for lower voltages. The error at a specific voltage is 
corrected by employing a correction factor determined by 
using a curve fitting tool available in MATLAB software. The 
polynomial equation in terms of voltage is found from curve 
fitting process expressed as 

                CF = P1 × V2 + P2 × V + P3 

where CF is the correction factor, V is the dc bias voltage   
and   coefficients    P1 = -4308 ,   P2 = 9912   and  P3 =-1.037e 
+ 004. 

 
Figure 7.  Comparison of Error before and after correction for  L=10um  

Value of CF is then deducted from the original values of 
the resonant frequency corresponding to the voltage at which 

CF is calculated. Error in the frequencies before and after 
applying the correction for cross-beam dimension L=10um is 
shown in figure. It is observed from the graph that the error 
reduces significantly and remains almost constant except for 
voltages above 17 volts in all cases.   

Graph of analytically obtained corrected resonant frequency 
values and the resonant frequency values obtained from the 
simulation ( required )  for different voltages is plotted as 
shown in the figure 12 for L=10um, L=12um and L=14um. 
 

 
Figure 8.   Analytically obtained corrected resonant frequency values and the 

resonant frequency values obtained from the simulation 
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