
1

Embedded Multiprocessor Architecture Using VHDL

Mr.Sumedh.S.Jadhav Prof.C.N.Bhoyar
Dept of Electronics Engg. Dept of Electronics Engg.
Nagpur, Maharashtra India Priyadarshini College of Engineering
sumedh_jadhav@rediffmail.com Nagpur, Maharashtra India

 cnbhoyar @yahoo.com

Abstract— Embedded multiprocessor design presents
challenges and opportunities that stem from task coarse
granularity and the large number of inputs and outputs for
each task. We have therefore designed a new architecture
called embedded concurrent computing (ECC), which is
implement on FPGA chip using VHDL. The design
methodology is expected to allow scalable embedded
multiprocessors for system expansion. In recent decades,
two forces have driven the increase of the processor
performance: Advances in very large-scale integration
(VLSI) technology and Micro architectural enhancements.
Therefore, we aim to design the full architecture of an
embedded processor for realistic to perform arithmetic,
logical, shifting and branching operations. We will be
synthesize and evaluated the embedded system based on
Xilinx environment. Processor performance is going to be
improving through clock speed increases and the clock
speed increases and the exploitation of instruction- level
parallelism. We will be designing embedded
multiprocessor based on Xilinx environment.

 Keywords—Multiprocessor design; FPGA based
embedded system design; Real time processor.

I. INTRODUCTION

 In recent decades, two forces have driven the increase
of the processor performance: Firstly, advances in very
large-scale integration (VLSI) technology and
secondly micro architectural enhancements [1].
 The Multiprocessor Specification, hereafter known
as the “MP specification,” defines an enhancement to

the standard to which PC manufacturers design DOS-
compatible systems. MP-capable operating systems
will be able to run without special customization on
multiprocessor systems that comply with this
specification.
 Processor Performance has been improve through
clock speed Increases and the exploitation of
instruction-level Parallelism. While transistor counts
continue to increase, recent attempts to achieve even
more significant increase in single-core performance
have brought diminishing returns [2, 3]. In response,
architects are building chips With multiple energy-
efficient processing cores instead of investing the
whole transistor count into a single, complex, and
power-inefficient core [3, 4]. Modern embedded
systems are design as systems-on a-chip (SoC) that
incorporate single chip multiple Programmable cores
ranging from single chip multiple programmable cores
ranging from processors to custom designed
accelerators. This paradigm allows the reuse of pre-

designed cores, simplifying the design of billion
transistor chips, and amortizing costs. In the past few
years, parallel-programmable SoC (PPSoC)have
Successful PPSoC are high-performance embedded
multiprocessors such as the STI Cell [3] .They are
dubbed single-chip heterogeneous multiprocessors
(SCHMs) because they have a dedicated processor that
coordinates the rest of the processing units. A
multiprocessor design with SoC like integration of
less-efficient, general-purpose processor cores with
more efficient special-purpose helper engines is
project to be the next step in computer evolution [5].
 First, we aim to design the full architecture of an
embedded processor for realistic throughput. We used
FPGA technology not only for architectural exploration
but also as our target deployment platform because we
believe that this approach is best for validating the
feasibility of an efficient hardware implementation.
 This architecture of the embedded processor resembles
a superscalar pipeline, including the fetch, decode,
rename, and dispatch units as parts of the in-order front-
end. The out of-order execution core contains the task
queue, dynamic scheduler; execute unit, and physical
register file. The in order back-end is comprised of only
the retire unit. The embedded architecture will be
implementing using the help of RTL descriptions in
System VHDL.
 We will integrate the embedded processor with a
shared memory system, synthesized this system on an
FPGA environment, and performed several experiments
using realistic benchmarks. the methodology to design
and implement a microprocessor or multiprocessors is
presented. To illustrate it with high detail and in a useful
way, how to design the most complex practical session
is shown. In most cases, computer architecture has been
taught with software simulators [1], [2]. These
simulators are useful to show: internal values in
registers, memory accesses, cache fails, etc. However,
the structure of the microprocessor is not visible.
 In this work, a methodology for easy design and real
Implementation of microprocessors is proposed, in order
to provide students with a user-friendly tool. Simple
designs of microprocessors are exposed to the students
at the beginning, rising the complexity gradually toward
a final design with two processors integrated in an
FPGA; each of which has an independent memory
system, and are intercommunicated with a unidirectional
serial channel.

mailto:sumedh_jadhav@rediffmail.com

2

II. MULTIPROCESSOR

 Moving from single CPU systems to multiprocessor
ones requires much more effort than it would seem.

 Topology questions
 Resource sharing
 Message passing
 Platform startup

A. Processor Units Hierarchy

Figure1 Processor Units hierarchy

 A programming language designed to facilitate the
development of memory hierarchy aware parallel
programs that remain portable across modern machines
featuring different memory hierarchy configurations.
Sequoia abstractly exposes hierarchical memory in the
programming model and provides language mechanisms
to describe communication vertically through the
machine and to localize computation to particular
memory locations within it.
 Multiprocessor system consists of two or more
connect processors that are capable of communicating.
This can be done on a single chip where the processors
are connected typically by either a bus. Alternatively,
the multiprocessor system can be in more than one chip,
typically connected by some type of bus, and each chip
can then be a multiprocessor system. A third option is a
multiprocessor system working with more than one
computer connected by a network, in which each
Computer can contain more than one chip, and each chip
can contain more than one processor.
 A parallel system is presented with more than one
task, known as threads. It is important to spread the
workload over the entire processor, keeping the
difference in idle time as low as possible. To do this, it
is important to coordinate the work and workload
between the processors. Here, it is especially crucial to
consider whether or not some processors are special-
purpose IP cores. To keep a system with N processors
effective, it has to work with N or more threads so that
each processor constantly has something to do.
Furthermore, it is necessary for the processors to be able
to communicate with each other, usually via a shared

memory, where values that other processors can use are
stored. This introduces the new problem of thread
safety. When thread safety is violated, two processors
(working threads) access the same value at the same
time. Some methods for restricting access to shared
resources are necessary. These methods are known as
thread safety or synchronization. Moreover, it is
necessary for each processor to have some private
memory, where the processor does not have to think
about thread safety to speed up the processor. As an
example, each processor needs to have a private stack.
The benefits of having a multiprocessor are as follows:
1. Faster calculations are made possible.
2. A more responsive system is created.
3. Different processors can be utilized for different
Tasks. In the future, we expect thread and process
parallelism to become widespread for two reasons: the
nature of the Applications and the nature of the
operating system. Researchers have therefore proposed
two alternatives Micro architectures that exploit multiple
threads of Control: simultaneous multithreading (SMT)
and chip multiprocessors (CMP). Chip multiprocessors
(CMPs) use relatively simple.

 Single-thread processor cores that exploit only
moderate amounts of parallelism within any one thread,
while executing multiple threads in parallel across
multiple processor cores. Wide-issue superscalar
processors exploit instruction level parallelism (ILP) by
executing multiple instructions from a single program in a
single cycle. Multiprocessors (MP) exploit thread-level
parallelism (TLP) by executing different threads in
parallel on Different processors.
 Multiprocessor Specifications and features:

 A multiprocessor extension to the PC/AT
platform that runs all existing uniprocessor
shrink-wrapped binaries, as well as MP
binaries.

 Support for symmetric multiprocessing with

one or more processors that are Intel
architecture instruction set compatible, such as
the CPUs in the Intel486™ and the Pentium®

processor family.
 Support for symmetric I/O interrupt handling

with the APIC, a multiprocessor interrupt
controller.

 Flexibility to use a BIOS with minimal MP-
specific support. An optional MP configuration
table to communicate configuration
information to an MP operating system

B. Hyperthreading
HT [1] works by duplicating certain sections of the
processor those that store the architectural state _ but
not duplicating the main execution resources.

3

Figure 2. Hyper threading

III. SOFTWARE TOOL
 The Xilinx Platform Studio (XPS) is used to design
Micro Blaze processors. XPS is a graphical IDE for
developing and debugging hardware and software. XPS
simplifies the procedure to the users, allowing them to
select, interconnect, and configure components of the
final system. Dealing with this activity, the student
learns to add processors and peripherals, to connect
them through buses, to determine the processor memory
extension and allocation, to define and connect internal
and external ports, and to customize the configuration
parameters of the components. Once the hardware
platform is built, the students learn many concepts
about the software layer, such as: assigning drivers to
Peripherals, including libraries, selecting the operative
system (OS), defining processor and drivers parameters,
assigning interruption drivers, establishing OS and
libraries parameters.
 An embedded system performed with XPS can be
Summarized as a conjunction of a Hardware Platform
(HWP) and a Software Platform (SWP), each defined
separately.

A. Hardware Platform

The HWP is described in the Microprocessor Hardware
Specification (MHS) file; it contains the description of
the system architecture, the memory map and the
configuration parameters. HWP can be defined as one or
more processors connected to one or more peripherals
through one or more buses. The definition of the activity
follows this sequence:
• To add processors and peripherals.
• To connect them through buses.
• To determine the processor memory allocation.
• To define and connect internal and external ports.
• To customize the configuration parameters of the
Components.

B. The Software Platform

 The SWP is described in the Microprocessor
Software Specification (MSS) file; it contains the
description of drivers, component libraries,
configuration parameters, standard input/output devices,

interruption routines and other software features. The
sequence of activities needed to define the SWP
is the following:
.

Figure 3 Multiprocessor system architecture.

• To assign drivers to peripherals.
• To assign interruption drivers.
• To establish OS and libraries’ parameters.

IV. APIC
Stands for Advanced Programmable Interrupt Controller
Programmable interrupt controller (PIC) is a device that
is used to combine several sources of interrupt onto one
or more CPU lines, while allowing priority levels to be
assigned to its interrupt outputs.

Figure 4 Advanced Programmable Interrupt Controller

V. THE MICROBLAZE PROCESSOR

 Micro Blaze is a 32-bit specific purpose processor
Developed by Xilinx in VHDL. It can be parameterized
using XPS to obtain an à-la-carte processor. It is a RISC
processor, structured as Harvard architecture with
separated data and instruction interfaces. Micro Blaze
components are divided into two main groups depending
on their configurability as shown in Fig.1. Some fixed
feature components are:
• 32 general purpose registers sized 32-bit each.
• Instructions with 32 bits word-sized, with 3 operands
and 2 addressing modes.
• 32 bits address bus.
• 3-stage Pipeline.

4

Some of the most important configurable options are:
• An interface with OPB (On-chip Peripheral Bus) data
bus.
• An interface with OPB instruction bus.
• An interface with LMB (Local Memory Bus) data bus.
• An interface with LMB instruction bus.
• Instruction cache.
• To include EDK libraries.
• To select the operative system (OS).
• To define processor and drivers’ parameters.
• Data cache.
• 8 Fast Simplex Link (FSL bus) Interfaces.
• Cache Link bus support.
• Hardware exception support.
• Floating Point Unit (FPU).
The suggested core embedded processor contains
a dual-issue, superscalar, pipelined processing unit,
Along with the other functional elements required to
Implement embedded SoC solutions. This other
Functions include memory management and timers.

 VI. Multicore System And Their Catches

Figure 5 Multicore system and their catches

Type of cache sharing depends on the system: it can be
L2 that is shared.The memory consistency model for a
shared-memory multiprocessor specifies the behaviour
of memory with respect to read and write operations
from multiple processors. We focuses on providing a
balanced solution that directly addresses the trade-off
between programming ease and performance.

A. Types of Coherence Protocols
 Directory-based: The data being shared is

placed in a common directory that maintains
the coherence between caches. The directory
acts as a _lter through which the processor
must ask permission to load an entry from the
primary memory to its cache. When an entry is
changed the directory either updates or
invalidates the other caches with that entry.

 Snooping: individual caches monitor address
lines for accesses to memory locations that they
have cached. When a write operation is
observed to a location that a cache has a copy
of, the cache controller invalidates its own copy
of the snooped memory location.

 Practical sessions introduce gradual learning, allowing
the fast design based on previous sessions. Essential
problems in hardware programming will be raised:

Figure 6 Caches coherency protocol example: MESI

B. SMP

Stands for Symmetric Multi Processing
 Identical processing units

 Single shared memory

 Single bus, mesh interconnections

C. NUMA

Stands for Non Uniform Memory Access
Memory access time depends on the memory location
relative to a processor. Under NUMA, a processor can
access its own local memory faster than non-local
memory.

 Highly scalable
 Requires special coherency protocols
 Requires OS support

D. Boot process

1.The BSP1 executes the BIOS's boot-strap code to
configure the APIC environment, sets up system-wide
data structures, starts and initializes the AP2s. When the
BSP and APs are initialized, the BSP then begins
executing the operating-system initialization code.
2.Following a power-up or reset, the APs complete a
minimal self-configuration, then wait for a startup signal
(a SIPI message) from the BSP processor. Upon
receiving a SIPI message, an AP executes the BIOS AP
configuration code, which ends with the AP being
placed in halt state.

1Boot strap processor.
2Application processor

VI. PRACTICAL DESIGN
• HyperTerminal serial communication.
• Using IO ports.
• Memory controller.
• Interruption routines and priority.
• Message passing in multiprocessors communication.
 The practical content of the subject is composed of 8
Projects. In the first session, user makes a basic system
which will be used in following sessions as the base core
system. Second and third sessions are used to introduce
the input/output flow and the communication with
external peripheral through the On-chip Peripheral Bus,
for general purpose. SRAM external memory is added to

5

 Relation between practices is shown. For instance,
5th session is based on all previous sessions, 7th session
is based on 3rd and 1st Session.

Figure 7. Design of Hardware Processor
 In above diagram we observed the result for
arithmetic operations. It can be depends upon the
Opcode. For logical processor instead of arithmetic
processor we will refer the logical Processor.

A. Hardware Platform Specifications

This stage is described in the MHS file. Following, the
Components specified in the structure of the system are
Enumerated:
• Two Micro Blaze processors.
• Two on-chip RAM memory blocks (BRAM), one for
Each processor.
• One UART.
• One OPB bus, to connect the UART with the slave
Processor.
• Two LMB buses to communicate each processor with
Their respective data memory controller; and another
Two LMB buses to interconnect the processors with
Their instruction memory controller.
• One FSL channel to intercommunicate each processor
with the other.
 After that, the interconnection of buses and
components is defined. The connection of the memory
ports are also set at this point. The student has to specify
in the connection matrix which components are linked to
which buses and with which kind of connection.
In the exposed case, four LMB buses are needed to
access local memory, two for each Micro Blaze, because
each processor has its own memory subsystem.
 Configured. The parameters for each component and
their meaning are described thoroughly in the
documentation included in the XPS platform.
 Another interesting configuration to be mentioned is
the UART operational configuration. The student has to
determine the operational frequency, the application of
the parity bit checking, working bauds, etc. A valid set
of parameters for the UART and Micro Blaze are the
following:

1) UART parameters.
a) C_CLK_FREQ = 50_000_000. Set the frequency of
the OPB bus, connected to the UART. It has to coincide
with the operational system speed.
b) C_BAUDRATE = 19200. Set the bauds for the

UART. The terminal used to receive characters has to be
configured at the same baud rate.
c) C_USE_PARITY = 0. Set whether the UART
should work with parity bit or not.

SOFTWARE AND HARDWARE REQUIREMENT

For Software simulation I will prefer MODELSIM and
for synthesis I will be prefer XILINX. Hardware
requirement is SPARTAN-3.

RESULT V ERIFICATION AND ANALYSIS

Observe the required result like arithmetic, logical,
branching and shifting.

Figure 8.Simulation Result of Arithmetic Processor for addition

ACKNOWLEDGEMENTS

Authors wish to remark the great task carried out by the
Xilinx and Modelsim user guide; and the authors wish to
thank C.N.Bhoyar for his contribution in the design
process.

REFERENCES

[1] John L. Hennessy and David A. Patterson. Computer architecture:
 a quantitative approach. Morgan Kaufmann Publishers Inc., San
 Francisco, CA, USA, fourth edition 2007.
[2] David Geer. Industry Trends: Chip Makers Turn to Multicore
 Processors. Computer, 38(5):11–13, May,2005.
[3] AMD Corporation. Multi-core processors: the next revolution in
 computing White paper, 2005.
[4] B. Ackland, A. Anesko, D. Brinthaupt, S.J. Daubert, A. Kalavade,
 J. Knobloch, E. Micca, M. Moturi, C.J. Nicol, J.H. O’Neill, J.
 Othmer, E. Sackinger, K.J. Singh, J. Sweet, C.J. Terman, and J.
 Williams. A Single-chip, 1.6-billion, 16-b MAC/s
 Multiprocessor IEEE Journal of, 35(3):412–424, Mar2000.
[5] Asawaree Kalavade, Joe Othmer, Bryan Ackland, and K. J.
 Singh.Software environment for a multiprocessor DSP. In DAC
 99:Proceedings of the 36th ACM/IEEE conference on Design
 automation, pages 827–830, New York, NY, USA, 1999. ACM..
[6] OpenSPARC http://www.opensparc.net/edu/university-
 program.html.Last accessed on 8th November 2009.
[7] “Platform Studio User Guide,” Application notes, Xilinx, 2005.
[8] “Microblaze Processor Reference Guide,” Application notes,
 Xilinx,2005.
[9] “Embedded System Tools Reference Manual,” Application
 notes,Xilinx, 2008.
[10] “OS and Libraries Document Collection,” Xilinx, Application
 notes, September 2007.
[11] Spartan-3 Board. http://www.digilentinc.com/ . Last accessed on
 30thOctober 2009.
[12] V. Sklyarov, and I. Skliarova. “Teaching Reconfigurable

http://www.opensparc.net/edu/university-

