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Abstract— Our problem as communication engineers is to 

restore the transmitted sequence or, equivalently, to identify the 

inverse of the channel, given the observed sequence at the 

channel output. This task is accomplished by adaptive equalizers. 

Decision feedback equalizers are used extensively in practical 

communication systems. This paper addresses the techniques of 

channel equalization by decision feedback equalizer using 

artificial neural network. In this paper, radial basis function 

(RBF) network and multi layer perceptron net (MLP) is used to 

implement DFE. Advantages and problems of this system are 

discussed and its results are then compared accordingly. 
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I.  INTRODUCTION 

It is an important technique to combat distortion and 
interference in communication links. The conventional 
approach to communication channel equalization is based on 
adaptive linear system theory. Channel equalization is an 
important subsystem in a communication receiver. 
Equalization is a technique used to remove inter-symbol 
interference (ISI) produced due to the limited bandwidth of the 
transmission channel [1]. When the channel is band limited, 
symbols transmitted through will be dispersed. This causes 
previous symbols to interfere with the next symbols, yielding 
the ISI. Also, multipath reception in wireless communications 
causes ISI at the receiver. Thus, equalizers are used to make 
the frequency response of the combined channel-equalizer 
system flat. Two classes of equalizers are known: linear and 
non-linear equalizers. In a Linear Equalizer, the current and 
the past values of the received signal are linearly weighted by 
equalizer coefficients and summed to produce the output and 
the other class of equalizers are non linear equalizers in which 
feedback is used whose one type is decision feedback 
equalizers which is discussed in this paper. 

II. DECISION FEEDBACK EQUALIZER 

It is a simple nonlinear equalizer used for channel with 
severe amplitude distortion, uses decision feedback to cancel 
the interference from symbols which have already have been 

detected. The equalized signal is the sum of the outputs of the 
forward and feedback parts of the equalizer as shown in Fig.1.  

 
Figure 1. Decision Feedback Equalizer. 

 

It consists of a linear feed forward filter (FFF) and a 
feedback filter (FBF) both are linear traversal filters, FFF 
suppresses the contribution of the pre-cursor ISI, i.e. the 
interference caused by the symbols transmitted after the 
symbol of interest. The FBF cancels the post-cursor ISI by 
subtracting a weighted linear combination of the previous 
symbol decisions, assumed to be correct. The result is then 
applied to a threshold device to determine the symbol of 
interest. The FFF enhances the noise, but the noise gain is not 
as severe as in the case of a linear equalizer. Both the forward 
and feedback filters may be adjusted simultaneously to 
minimize the Mean Square Error. 

III. ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial Neural Network (ANN) takes their name from the 
network of nerve cells in the brain. McCulloch and Pitts have 
developed the neural networks for different computing 
machines. There are extensive applications of ANN in the field 
of channel equalization, estimation of parameters of nonlinear 
systems, pattern recognition, etc. ANN is capable of 
performing nonlinear mapping between the input and output 
space due to its large parallel interconnection between different 
layers and the nonlinear processing characteristics.  
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IV. MULTILAYER PERCEPTRONS 

The basic element of the multilayer perceptron is the 
neuron, as shown in Fig. 2.  

 

Figure 2. jth neuron in mth layer. 

 

Each neuron has primarily local connections and is 
characterized by a set of real weights [wij,.....,wNj] applied to 
the previous layer to which it is connected and a real threshold 
level Ij. The j
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The output value vj
(m)

 serves as input to the (m + 1)
th

 layer 
to which the neuron is connected. The nonlinearity commonly 
used in the perceptron is of the sigmoid type: 
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Where f(x) lies in the interval [-1, 1] as shown in Fig. 3. 

 
Figure 3. Activation Function. 

 

The neurons store knowledge or information in the weights 
{wij} and the weights are modified through experience or 
training. A multilayer perceptron (MLP) consists of several 
hidden layers of neurons which are capable of performing 

complex, nonlinear mappings between the input and the output 
layer as shown in Fig.4. 

 
Figure 4. Multilayer Perceptron Architecture. 

 

V. MLP BASED DECISION FEEDBACK EQUALIZER 

A three-layer preceptron based decision feedback equalizer 
structure, as shown in Fig. 5. The input to the feed forward 
filter is the sequence of noisy received signal samples {yn}. 
The input to the feedback filter is the output symbol decision 
sequence from a nonlinear symbol detector (quantizer) {ũn-d} 

 
Figure 5. Multilayer Perceptron Decision Feedback Equalizer. 

 

At time n, the input N x 1 received signal vector  

(n)
T
 = [yn, yn-1, … , yn-N+1]              (3) 

and the decision l x 1signal vector 

[ũn-d-1, ũn-d-2, … , ũn-d-1]                (4) 

 

are in the feed forward filter and feedback filter of the decision 
feedback equalizer, respectively, where d is a delay parameter. 
The decision ũn-d is formed by quantizing the estimate ũn-d in 
the output layer to the nearest information symbol. 

The signals at the input layer of the decision feedback 
equalizer can be represented by a (N+l)x1 vector as 
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V
(0)

 = [yn, yn-1, … , yn-N+1; ũn-d-1, … , ũn-d-1]
T
           (5) 

 

The N1x1 vector in the output of hidden layer 1 is 
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 j = 1, 2,…,N1 

 

Where b denotes the feedback tap weight. 

 

The N2x1 vector in the output of hidden layer 2 is 
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k = 1, 2,…,N2 

 

The final output is 
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Where ŭn-d is the estimated signal at time n. Substituting 
eqns. 7 and 9 into eqn. 10, yields 
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The nonlinear detector can be modeled as a threshold 
function g(x) and is defined as  
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The ws (weights) and Is (threshold levels) in eqn. 11 are 
values specified by the training algorithm, so that after training 
is finished the equalizer will self-adapt to changes in channel 
characteristics occurring during transmission (decision 
directed mode).  

VI. RADIAL BASIS FUNCTION 

RBF consist of  a set of input vectors {xi} and the 
corresponding output vectors {yi} that finds appropriate 
transfer function that can fit noisy input vectors to produce the 
most appropriate output according to the given input/output 
vector pairs 

It consists of two layers with the activation functions in the 
first layer being radial, and in the output layer being linear as 
shown in figure 6. The activation function of the first layer is 
called the basis function. It is a radial function characterized 
by being monotonically increasing or decreasing from a centre 
value. Examples of radial function are the thin plate spline, 
multi-quadratic, inverse multi-quadratic and the Gaussian 
functions. The Gaussian function is most commonly used 
because of its smooth characteristics. It is given by eqn. 13: 
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Where, c is the centre of the function and r is its spread 
constant. The centre and the spread constant control the 
location and the spread of the decision region of the radial 
function, respectively. The spread constants should be chosen 
such that the functions cover their areas and some of the 
adjacent areas in the space, increasing the ability of the ANNs 
to generalize for noisy patterns. The output of the RBF net is 
given by eqn. 14: 
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The RBF net is trained by presenting the training data 
vectors and the corresponding output vectors to the net and it 
will compute its weight matrix that minimizes the cost 
function C given by: 
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Figure 6. General Architecture of an RBF Net. 

VII. THE IMPLEMENTED SYSTEM 

The implemented RBF-based DFE consists of a tapped 
delay line that has 5 taps. At each sampling interval, the 
signals in the line are shifted by one location and a new 
received signal is put at the first tap. It is trained using 500 
training samples with their corresponding outputs. It is 
initialized with one neuron whose activation function is 
Gaussian with a spread constant of 0.7. Each time, the RBF 
computes the weight matrix and adds one neuron if the MSE is 
still high. This process is repeated until the required MSE is 
obtained.  

The hidden layer consists of 170 and 300 basis functions 
for the DFE and linear equalizers, respectively. This 9, 3 and 1 
neuron, the nine input signals constitute a delay line of 9 taps. 
Both the hidden and the output layers have activation 
functions of the tan-sigmoid shape. The MLP net is initialized 
using the first training example from the channel. The training 
process then continues using the back propagation algorithm 
with a variable training rate. Upon receiving a new training 
example, it computes the MSE and updates its coefficients 
accordingly. This process is repeated recursively until the 
required MSE, which was set to 10

-4
, is achieved.  

VIII. SIMULATION RESULTS 

The two RBF and MLP –based DFEs are used to equalize 
two channels that are of practical importance. The first is a 
linear channel having small distortions to its input. The second 
is a severe-ISI channel whose frequency response has a deep 
null. The latter type is faced often in practical communication 
systems and is very difficult to equalize using linear 
equalizers. However the two channels used are shown in Fig. 
7. 

 

Figure 7. (a) Channel 1   (b) Channel 2. 

 

The results of using linear equalization for channels 1 and 
2 are shown in Figs. 8(a) and 8(b) respectively. The RBF 
based equalizer performance is better than that of the MLP 
based by 5 and 4 dBs, for channels 1 and 2, respectively at 10-
2 bit error rate (BER). It is clear that channel 2 was not 
equalized well using linear equalization because of its severe 
ISI.  

 
Figure 8(a) Performance of linear equalization of Channel 1. 

 
Figure 8(b) Performance of linear equalization of Channel 2. 

 

Fig. 9(a) shows the performance of both MLP and RBF 
based (4, 1) DFEs for channel1. It is clear that the RBF based 
equalizer outperforms the MLP based one by about 4 dBs at 
10-3 BER. Fig. 9(b) shows the same information as part (a) for 
channel 2. Also, the RBF based DFE outperforms the DFE 
based on MLP by about 2dB. Of course, the overall 
performance for channel 2 is worse than that of channel 1 
because channel 2 is more severe. In both channels, the DFE 
based on RBF is better than the one based on MLP even when 
the correct symbol is fed back in the MLP and the detected 
one is fed back in the RBF. This means the former DFE is 
better than the latter always, since feeding back the correct 
symbol is the most ideal case. 

 

Figure 9(a) Performance of DFE of Channel 1. 
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Figure 9(b) Performance of DFE of Channel 2. 

 

Figs.10(a) and 10(b) shows the convergence of both MLP 
and RBF- based DFEs, respectively. Both equalizers were able 
to reach the required MSE but the RBF is faster. On the other 
hand, the RBF based DFE needs more computations in the 
decision directed modes. 

This is due to the high no. of basis functions in the hidden 
layer of the RBF system compared to the MLP system.  

Simulation results showed that increasing the no. of 
neurons in the hidden layer of the MLP will not improve the 
convergence time or the BER performance. So, the price paid 
for reducing the BER and speeding up the training process by 
using the RBF based DFE, is the more computations required 
in the decision directed mode. 

 

 

Figure 10(a) Convergence of MLP-based DFE. 

 

 
Figure 10(b) Convergence of RBF-based DFE. 

 

IX. CONCLUSION 

In this paper DFE equalizers were implemented using both 
MLP and RBF nets. The above systems were tested for two 
different channels. it is seen that the RBF based equalizers 
perform better than the MLP based one, especially at high 
SNR. Moreover, the RBF equalizer converges faster than the 
MLP in the training mode but need more computational time 
in the decision directed mode, because of its large no. of 
neurons compared with the MLP. Trade off between fast 
convergence and performance on one side and the on line 
computational time on the other side should be taken into 
consideration upon designing such systems in practice.  

The DFE performs better when the correct symbol is the 
feedback signal that is an ideal case. They also are efficient in 
reducing the effect of the deep frequency null of channel 2. 
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