

16

A Survey on Generation of Test Cases and Test Data
Using Artificial Intelligence Techniques

Shveta Parnami, Prof. K.S.Sharma

Department of CS and IT
The IIS University

Jaipur, Rajasthan, India
shvetaparnami@gmail.com

Dr. Swati V.Chande,
Department of Computer Science

International School of Informatics and Management
Jaipur, Rajasthan, India

Abstract-Testing plays an important role in software
development life cycle. Software testing is a critical element in
software quality assurance and represents the ultimate review
of specifications, design and coding. It is in general a laborious,
costly and time consuming task: it spends almost 50% of
software system development resources. For a good test quality
the systematic design and appropriate selection of test cases
and test data is essential. Test cases and test data generation is
a key problem in software testing and its automation improves
the efficiency and effectiveness and reduces the high cost of
software testing. The application of Artificial Intelligence
techniques in Software Testing is an emerging area of research
that brings about the cross fertilization of ideas across two
domains. Artificial Intelligence techniques of searching are
used to automate test data and test cases. The paper presents
an analysis of relative efficiency in using test data and test
cases using artificial intelligence techniques.

Keywords-Test data, test cases, artificial intelligence techniques,
genetic algorithm.

I. INTRODUCTION

A. Software Testing:

Software testing is the process of exercising and evaluating
a system or system component by either manual or
automated means to verify that it satisfies specified
requirements and identifies the differences between the
expected and actual results. It is performed for defect
detection and reliability estimation. The software testing is
conducted by executing the program developed with test
inputs and comparing the observed output with the expected
one. The main aim of testing is to cover the programming
features. In White-box or structural testing, test data is
design for program coverage. That means all paths of
program should be executed at least once. There are three
main types of coverage criteria; statement coverage, branch
coverage, and path coverage. Branch coverage is widely
used testing technique and it is the basis of several industry
standards because it is not an extremely strict coverage
criterion [14]. The Black-box or functional testing does not
need any information about how the program was written. It
generates test from software specification to ensure that
software work properly. Gray-box testing investigates the
coverage criteria of white-box method and finds all possible
coverage paths.

It is difficult to test the whole software, therefore

the selective parts of the software are considered for the
testing. Because the input space of the Software Under Test
(SUT) might be very large, testing has to be conducted with
a representative subset of test cases. The test cases defined
decide about the kind and scope of the test. Creation of
relevant subset of test cases during software testing is a
critical activity [13]. The test cases which are used to
examine the SUT must possess an ability to expose the
faults as well as test cases must be a representative subset of
possible inputs. The quality and the significance of the
overall test are directly affected by the set of test cases that
are used during testing. Test data is used to create the test
cases. Test data generation is the process of identifying a set
of program input data that satisfies a given testing criterion
[1]. This requirement of effective test cases demands the
generation of „Good‟ automated test cases. Test data

generation technique and application of a test data adequacy
criterion justifies the „Better‟ test data [1]. There is need to
explore these aspects of test data generation in order to
increase the degree of automation and efficiency of software
testing.

B. Artificial Intelligence:

Artificial Intelligence is the science and engineering of
making intelligent machines, especially intelligent computer
programs. Artificial Intelligence (AI) is defined as the
ability of computer software and hardware to do those
things that we, as humans, recognize as intelligent behavior.
These include activities as:

 Searching: finding “good” material after having

been provided only limited direction, especially
from a large quantity of available data.

 Surmounting constraints: finding ways that
something will fit into a confined space, taking
apart or building a complex object, or moving
through a difficult maze.

 Recognizing patterns: finding items with similar
characteristics, or identifying an entity when not all
its characteristics are stated or available.

 Making logical inferences: drawing conclusions
based upon understood reasoning methods such as
deduction and induction.

17

In AI, these processes have manifested themselves in well-
recognized and maturing areas including Neural Networks,
Expert Systems, Automatic Speech Recognition, Genetic
Algorithms, Intelligent Agents, Natural Language
Processing, Robotics, Logic Programming, and Fuzzy Logic.

II. REVIEW ON APPLICATION OF ARTIFICIAL
INTELLIGENCE TECHNIQUES IN SOFTWARE

TESTING

One of the software engineering areas with a more prolific
use of artificial intelligence techniques is software testing.
According to [14] the test data are generated either with
static method or dynamic method. Static methods include
the domain reduction and symbolic execution and the
dynamic methods include random testing, local search
approach, goal oriented approach, chaining approach and
evolutionary approach. Static methods suffer from a number
of problems when they handle indefinite array, loops,
pointer references and procedure calls whereas the dynamic
test data generation avoids these problems. AI techniques
used for test data generation included the AI Planner
Approach, Simulated Annealing, Tabu Searching, Genetic
Algorithm and Ant Colony Optimization (ACO). Being a
robust search method in complex spaces, genetic algorithm
is applied to test data generation and evolutionary approach
has become a burgeoning interest since then.

Premal and Kale in [13] applied the AI technique
to find the most critical path clusters in a program for
improving software testing efficiency. The weighted control
flow graphs are created for test data generation using
Genetic Algorithm. Huaizheng and Lam in [7] have used an
Ant Colony Optimization approach to automatically
generate test data from UML Statechart diagrams for state-
based software testing. The proposed approach deals with
the automatic generation of test suites from the UML
Statechart diagrams for state based software testing, and
uses the all state testing coverage as test adequacy
requirement.

In recent years, advanced heuristic search techniques
have been applied to software testing. These techniques are
based on evolutionary algorithms. Software testing uses a
meta-heuristic search technique, to convert the task of test
case generation into an optimal problem [6]. Faezeh et. al. in
[5] focused on the use of independent path to reduce time
and on precisely monitoring the execution trace of the
program. Genetic algorithm is applied with improved
parameters for test cases designed to better detect bugs of
tested program. The genetic algorithm based tester fulfills
test criteria by manner of evolutionary computation. Genetic
Algorithm method with dynamic fitness function and
stopping criterion is used for effective testing and low cost
identification of infeasible path. The approach used suffers
from the disadvantage about dynamic aspect of testing, as
the stopping criteria used can‟t specify actual number of

generations, i.e. in some cases, the tester is exited based on
waiting time, while the stopping criterion is not satisfied.

Generating test data automatically and identifying

infeasible paths reduces the testing cost, time and effort.
Anu et. al. in [2] mentioned that the work has been done on
the automation of test cases using Tabu search algorithm on
complex programs under test and large number of input
variables. The tabu search algorithm is used for generation
of structural software tests. The authors present use of tabu
search with dijksra algorithm (a greedy approach) to provide
an efficient path with maximum code coverage and
minimum cost.

III. DISCUSSION ON RESULTS

Software testing takes a large portion of the software project
resources. Reduction in cost and time at this stage will be of
great help for software development process. Test cases and
test data generation is a key problem in software testing and
its automation improves the efficiency and effectiveness and
improves the high cost of software testing [14].

In most test case design it is difficult to automate e.g. for
functional testing the generation of test cases is usually not
possible as no formal specifications are applied in industrial
practice and for structural testing the limits of symbolic
execution make an entire automation impossible. Many
researchers and practitioners have been working in
generating optimal test cases based on specifications [8].
Parsana and Chandran in [11] had suggested a model based
approach to derive test cases using tree structure coupled
with genetic algorithm and have concluded that their
proposed model is useful to generate test cases. The genetic
algorithm is also used to automatically generate test cases
for path testing [13].

The generations of test data using random, symbolic and
dynamic approach are not sufficient enough to generate
adequate amount of test data. Other problems like non-
reorganization of occurrences of infinite loops and
inefficiency to generate test data for complex programs
makes these techniques not worthy for generating test data.
Therefore there is need for generating test data using search
based technique [1]. In addition to these there is need of
generating test cases that concentrate on error prone areas of
code [3].

Test data is often generated by hand, so demand for
automatic test data generation is high in these sectors.
Ahmed and Moheb in [1] showed through experiments that
the test data generation based on search techniques like
genetic algorithm reduced the cost of software testing by
more than 75% and when random test data generation is
compared with an approach based on genetic search then it
has been found that genetic search visibly outperformed
random test generation [14]. Premal and Nirpal in [13]

18

concluded that when Genetic Algorithm techniques applied
for finding the most critical paths in order to generate the
test data outperforms the exhaustive search and local search
techniques. Using the Ant Colony Optimizer algorithm, a
group of ants effectively explore the graph created to
represent the Statechart model structure of a software
system under test and generate optimal test data to achieve
test coverage requirement [7]. Random test generated test
data do not give a good test data set. The quality of test data
produces by genetic algorithms is higher than the quality of
test data produced by random way because the algorithm
can direct the generation of test cases to the desirable range
fast [4]. Genetic algorithms are also useful in reducing the
time required for lengthy testing by generating meaningful
test data. [13]

IV. CONCLUSION

Software testing is the process of identifying the flaws
and defects in the system. The goal of software testing is
to design a set of minimal number of test cases and test
data such that it reveals as many faults as possible. In
software testing process each test case has an identity and
is associated with a set of inputs and a list of expected
outputs. Test data generation is the process of identifying
a set of program input data that satisfies a given testing
criterion. Test cases and test data generation is a key
problem in software testing and its automation improves
the efficiency and effectiveness and improves the high
cost of software testing. The automation of test data and
test cases generations using artificial intelligence
techniques like genetic algorithm, simulated annealing
and ant colony optimizer are better than the generation of
test data and test cases using the exhaustive and random
test generation.

V. REFERENCES

1. Ahmed S. Ghiduk and Moheb R. Girgis,(2010), Using Genetic

Algorithms and Dominance Concepts for Generating Reduced Test
Data, Informatica (Slovenia), Volume 34, Number 3, pp.377-385.

2. Anu Sharma, Arpita Jadhav, Praveen Ranjan Srivastava, Renu Goyal
(2010), Test Cost optimization Using Tabu Search, Journal on
Software Engineering and Applications, 2010, Vol. 3, pp. 477-486.

3. Berndt, D.; Fisher, J.; Johnson, L.; Pinglikar, J. and Watkins,
A.(2003), Breeding Software Test Cases With Genetic Algorithms,
Proceeding of the 36th Annual Hawaii International Conference on
System Sciences, Track 9, Volume 9, ISBN: 0-7695-1874-5, pp.10.

4. C Doungsa-ard, K Dahal, and A Hossain (), AI Based Framework for
Automatic Test Data Generation, International Conference on
Software Engineering Advances, 2007. ICSEA 2007., 25-31 Aug.
2007, ISBN: 0-7695-2937-2, pp. 47.

5. Faezeh S. Babamir, Esmaeil Amini, S. Mehrdad Babamir, Ali
Norouzi and Berk Burak Ustundag(2010), Genetic Algorithm and
Software Testing based on Independent Path Concept, International

Conference on Genetic and Evolutionary Methods-GEM'10, The
2010 World Congress in Computer Science, Computer Engineering
and Applied Science, Las Vegas, Nevada, USA, July 2010.

6. Gupta, N.K. and Rohil M.K.,(2008), Using Genetic Algorithm for
Unit Testing of Object Oriented Software, International Conference
on Emerging Trends in Engineering and Technology, 16th -18th July
2008, Nagpur, Maharastra, ISBN: 978-0-7695-3267-7, pp. 308-313.

7. Huaizheng Li and C. Peng Lam (2005), Software Test Data

Generation using Ant Colony Optimization, Proceedings of World
Academy of Science, Engineering and Technology, Vol. 1, Jan 2009.
ISSN 1307-6884.

8. Joachim Wegener (2001), Evolutionary Testing, Testworkshop TUM,
18th Jan 2001, Germany.

9. Michael, C.C., McGraw, G.E., Schatz, M.A. and Walton, C.C. (1997),
Genetic algorithms for dynamic test data generation, International
Conference on Automated Software Engineering, 1st – 5th November
1997, Incline Village, NV, USA, ISBN: 0-8186-7961-1, pp. 307-308.

10. Misra A, Mehra R, Singh Mayank, Kumar Jugnesh and Mishra
Shaailendra(2011), Novel Approach to automated test data generation
for AOP, International Journal of Information and Education
Technology, June 2011, Vol.1.

11. Parsama M and Chadran K.R (2011), Automatic Test Case
Generation for UML Object Diagrms using Genetic Algorithm,
Internal Journal of Advance Soft Computing Application, July 2011,
ISSN-2074-8523, Vol.1,

12. Premal B. Nirpal and Kale K.V.(2010),Comparison of Software Test
Data for Automatic Path Coverage Using Genetic Algorithm, Internal
Journal of Computer Science and Engineering Technology,
ISSN:2229-3345 Vol. 1, Issue 1.

13. Premal B. Nirpal and Kale K.V.(2011), Using Genetic algorithm for
automated software test case generation for path testing, Internal
Journal of Advanced Networking and Applications, Vol. 2, Issue 6,
pp.911-915.

14. Srivastava P.R and Tai-hoon Kim(2009), Application of Genetic
Algorithm in Software Testing, International Journal of Software
Engineering and its Applications, October 2009, Vol. 3, No. 4.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8360
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579839

