

1

Missing Value Estimation In DNA Microarray

– A Fuzzy Approach

 Sumit Chakraborty Sujay Saha Kashinath Dey

 Lecturer, CS Dept Asst. Professor, CSE Dept Associate Professor, CSE Dept

 Ramsaday College, Howrah,WB Heritage Institute of Technology University of Calcutta

sm.chakraborty09@gmail.com sujay.saha@heritageit.edu kndey55@gmail.com

Abstract - DNA microarray technology which is

used in molecular biology, allows for the

observation of expression levels of thousands of

genes under a variety of conditions. The analysis of

microarray data has been successfully applied in a

number of studies over a broad range of biological

disciplines. Now it is very unfortunate that various

microarray experiments generate data sets

containing missing values. Since most of the

algorithms for gene expression analysis require a

complete gene array as input, the missing values

need to estimate. The methods exist for estimating

missing values are like KNNimpute, SVDimpute,

LLSimpute, LLS-SVDimpute etc. In this paper we

present a new fuzzy technique Fuzzy Difference

Vector Impute (FDVimpute) for estimating missing

values in a DNA microarray.

Keywords – DNA microarray, missing value, LLS-

SVDImpute, FDVImpute, Spellman dataset

I. INTRODUCTION

Gene expression microarrays provide a popular
technique to monitor the relative expression of

thousands of genes under a variety of

experimental conditions. In spite of the

enormous potential of this technique, there

remain challenging problems associated with the

acquisition and analysis of microarray data that

can have a profound influence on the

interpretation of the results.

Gene expression microarray

experiments can generate data sets with multiple

missing expression values [1]. Unfortunately,
many algorithms for gene expression analysis

require a complete matrix of gene array values as

input. Methods such as hierarchical clustering

and K-means clustering are not robust to missing

data, and may lose effectiveness even with a few

missing values. Methods for imputing missing

data are needed, therefore, to minimize the effect

of incomplete data sets on analyses, and to

increase the range of data sets to which these

algorithms can be applied. There are several

ways to deal with missing values such as

deleting genes with missing values from further

analysis, filling the missing entries with zeros, or
imputing missing values of the average

expression level for the gene

 Missing values can lead to erroneous

conclusions about data and substitution of

missing values may introduce inaccuracies and

inconsistencies. These values can negatively

impact discovery results, and errors or data

skews can proliferate across subsequent runs and

cause a larger, cumulative error effect. As well,

most analysis methods cannot be performed if

there are missing values in the data. Missing

values may also prevent proper classification and
clustering.

 So the proper and more accurate

prediction of Missing values remains an

important step on the way to get better results.

The goal of missing value is to represent an

accurate data set of genes, species, etc. A variety

of approaches have been proposed for estimating

missing values in DNA microarrays. Some of

these methods are very complex and take a lot of

time, while other having less accuracy.

The organization of the article is as
follows: In section II, we describe some already

existing methods for estimating missing values.

Section III presents the proposed missing value

estimation method. In section IV, we provide

experimental results along with comparisons.

Section V discusses about Conclusion & Future

scope.

II EXISTING METHODS

There are several methods to estimate missing

values in a DNA microarray dataset. Four among

them are briefly described as follows:

LLSimpute Algorithm

Local least square imputation method

(LLSimpute) represents a target gene that has
missing values as a linear combination of similar

genes [2]. The similar genes are chosen by k-

2

nearest neighbors or k coherent genes that have

large absolute values of Pearson correlation

coefficients.

G denote a gene expression data matrix with m

genes and n experiments and assume m > > n (G

is a nm matrix). In the matrix G, a row gi

represents the ith row with n experiments (n1

matrix).

nmmg

g
g

G























.
.

2

1

A missing value in the lth location of the ith gene

is denoted as α, i.e. G (i, l) = gi (l) = α. There are

two steps in the LLSimpute method.

First step is to select k (k < m) other genes with

expressions most similar to that of g1 and with

the values in their first positions not missing.

The second step is regression and estimation,

regardless of how the k genes are selected To

recover a missing value α in the first location

g1(1) of g1 in G the k-nearest neighbor gene

vectors for g1 are found for LLSimpute. In this
process of finding the similar genes, the first

component of each gene is ignored following the

fact that g1(1) is missing. Now there are several

metric to choose K similar Genes such as,

Euclidian Metric, Pearson Coefficients etc. The

LLSimpute using the Pearson Coefficients to

select k genes is referred as LLSimpute/PC.

 Based on these k-neighboring gene

vectors, the matrix
)1( nkRA and the two

vectors
1 kRb and

1)1( nRw are formed.

The k rows of the matrix A consist of the k-

nearest neighbor genes ki 1,g si with their

first values deleted, the elements of the vector b

consists of the first components of the k vectors

sig and the elements of the vector w are the n −

1 elements of the gene vector g1 whose missing

first item is deleted. After the matrix A and the

vectors b and w are formed, the least squares
problem is formulated as

 wxAT 
x

min

Then, the missing value α is estimated as a linear

combination of first values of genes

wbxb TT)(A †T Where (AT)† is

the pseudo inverse of AT
.

KNNimpute Algorithm

This method is very much same as LLSimpute

method except the estimation phase. This

method selects genes with expression profiles
similar to the gene of interest to impute missing

values [1]. If we consider gene A that has one

missing value in experiment 1, this method

would find K other genes, which have a value

present in experiment 1, with expression most

similar to A in experiments 2–N (where N is the

total number of experiments). A weighted

average of values in experiment 1 from the K

closest genes is then used as an estimate for the

missing value in gene A. In the weighted average,

the contribution of each gene is weighted by

similarity of its expression to that of gene A. To
recover a missing value α in the first location

g1(1) of g1 in G the k-nearest neighbor gene

vectors for g1 are found for KNNimpute. In this

process of finding the similar genes, the first

component of each gene is ignored following the

fact that g1(1) is missing. There are several

metric to choose K similar Genes such as,

Euclidian Metric.

SVDimpute Algorithm

The SVDimpute method uses Singular Value

Decomposition of matrices to estimate the

missing values of a DNA micro array [1]. This

method works in two steps. First it decomposes

the Gene data matrix into a set of mutually

orthogonal expression patterns that can be

linearly combined to approximate the expression

of all genes in the data set. SVD is based on a

theorem from linear algebra which says that a

rectangular matrix A can be broken down into

the product of three matrices - an orthogonal

matrix U, a diagonal matrix S, and the transpose
of an orthogonal matrix V. The theorem is

usually presented as follows

T

nnnmmmnm VSUA ,,,, 

Let A be a matrix with m rows and n columns.

Now the SVD method is applied on this matrix

as follows:

At first, AAT is computed, which is a square

(Symmetric) matrix with m rows and m columns.

So this matrix has m eigen values (Real no) and

m corresponding eigen vectors. Let X be the set

of eigen vectors of AAT, arranged according to

3

their corresponding eigen values (eigen values

are sorted in descending order on their absolute

values). So the columns of X are eigen vectors of

AAT, Now normalized each columns of X to

obtained the orthonormal matrix U. Secondly,

let Y be the set of eigen vectors of ATA,
arranged according to their corresponding eigen

values (eigen values are sorted in descending

order on their absolute values).So the columns of

Y are eigen vectors of ATA, Now normalized

each columns of Y to obtained the orthonormal

matrix V. Thirdly, compute the absolute values

of the eigen values of AAT or ATA and construct

a diagonal matrix S whose diagonal elements are

the square roots of these values sorted in

descending order. Once k most significant

eigengenes from VT are selected, the missing

value j in gene i can be estimated by first
regressing this gene against the k eigengenes &

then by using the coefficients of the regression to

reconstruct j from a linear combination of the k

eigengenes.

LLS-SVDimpute Algorithm

This algorithm is a modification of existing

SVDimpute method. Since SVD can only be

performed on complete matrices, the original

SVDimpute algorithm first applies row average
to substitute all missing values in A to obtain A‟.

After that SVDimpute algorithm is applied on A‟

for estimating each missing values. But LLS-

SVDimpute algorithm [3] is different from the

earlier version of SVDimpute in the initial filling

of missing cells of a DNA microarray. LLS-

SVDimpute algorithm first applies LLSimpute

method to estimate the missing cells initially, &

then uses SVDimpute algorithm to approximate

those values further.

III PROPOSED METHOD

In all the existing methods for estimating

missing values in DNA microarray, the most

similar genes of the target gene are selected on

the basis of certain metrics, like Pearson

correlation coefficients, Euclidean distance etc.

The genes will be selected if satisfy certain

conditions, otherwise ignored. But this is a kind

of crisp technique & it doesn‟t always produce

good results. That‟s why we try to incorporate

some fuzziness in the proposed method
FDVimpute of estimating missing values.

FDVimpute estimates the missing cells of

datasets in two steps. The first step selects

nearest (most similar) genes of the target gene

(whose some component is missing) using Fuzzy

Difference Vector algorithm. Then the missing

cell is estimated by using least square feet on the

selected genes in the second step.

Selecting Neighboring Genes

Given a dataset G of m genes y1, y2, …. ym

each of which have n dimensions. Now the

difference vector Vi of the ith gene yi is

calculated as follows:

Vi (k) = yi (k) - yi (k+1), 1 ≤ k≤ n-1

Let‟s suppose mij contains the number of

matches between the difference vectors Vi and Vj

of the respective genes. A match in the kth

component of the vectors Vi and Vj is

determined by whether the sign of Vi (k) and Vj

(k) is same or not. In this way we calculate the
total number of matches between the ith and jth

genes, that mij contains. Since it is a fuzzy

approach, we define a membership function µ (i)

for i th gene as follows:

 µ (i) = m(i)/(n-1)

If the membership value of gene i is greater than

the predefined threshold Ө then that gene will be

selected as the neighboring gene of the target

gene.

The following Algorithm selects the most similar

genes of the data matrix X with m rows & n
columns where the 1st gene is treated as the

target gene. That‟s why in the computation of the

difference vectors the 1st component of each

gene is ignored.

Step 1: For i=1 to m do // Constructs the difference

 // table

 For j=1 to n-1 do

 diff_table (i, j) =X (i, j)-X (i, j+1)

 End

 End

Step 2: For i=2 to m do // Computes the matches for

 // membership function
 m (i)=0

 For j=1 to n-1

 if (diff_table(1,j)*diff_table(i,j)>0) then

 m (i)++

 End If

 End

 End

 k=0
Step 3: For i=2 to m do // Selects the nearest genes

 µ (i) = m(i)/(n-1)

 If µ(i)>Ө then

 k=k+1
 For j=1 to n do
 A(k,j)=X(i,j) // A contains most similar

 // genes of target

4

 End

 End If

 End

The time complexity of the above algorithm is O

(m*n).

Formulation of Least Square feet

Based on these k gene vectors of , the

matrix
)1( nkRB and the two vectors

1 kRb and
1)1( nRw are formed. The k

rows of the matrix B consist of the k genes of A

with their first values deleted, the elements of the

vector b consists of the first components of the k
vectors of A and the elements of the vector w

are the n − 1 elements of the gene vector g1

whose missing first item is deleted. After the

matrix A and the vectors b and w are formed, the

least squares problem is formulated as

 wxBT 
x

min

Then, the missing value α is estimated as a linear

combination of first values of genes

wbxb TT)(B †T

Where (BT)† is the pseudo inverse of BT.

   bxbxbxx · · · b 1

T

IV EXPERIMENTAL RESULTS

We have applied our FDVimpute algorithm on

„Spellman‟ data set, having 6025 genes and

approximately 76 experiments in each gene. The

algorithm is coded with MATLAB 6.5 & run on

an Intel Pentium IV computer with 3.06 GHz

Processor and 256 RAM. The parameters „Error‟

& „Fraction_eror‟ will be calculated by

|Estimated_value – Original_value| and
|Error/Original_value| respectively. The

performance measure of various methods depend

on the parameter „Fraction_eror‟, as it lowers the

accuracy is better.

Since we know that LLS-SVDimpute method

shows better results than earlier KNN &

SVDimpute methods in most of the cases, the

following table TABLE 1 displays the

comparative results for some of the experiments

between the proposed FDVimpute & LLS-

SVDimpute.

The Comparison of results are shown using

performance diagrams drawn on the basis of the

parameter „Average Fraction Error‟ as follows:

V CONCLUSION

Considering the above results and diagrams of

the experiments done on the “Spellman” dataset

we can conclude that FDVImpute produces

better results than LLS-SVDImpute algorithm.

So, this proposed method is so far best among all

the methods exist to estimate missing values of a
DNA microarray. Since FDVImpute is a Fuzzy

approach, so the performance can be improved

by taking a more efficient membership function

µ in the selection algorithm and the appropriate

choice of the threshold Ө.

5

TABLE 1

Comparison of the Results of the proposed FDVimpute method with LLS-SVDimpute

LLS-SVDimpute Result FDVimpute Result

Row

Col Ori_val K(LLS) K(SVD) Esti_val Error Frac_eror Avg. Fraction
Error

Ө Esti_val Error Frac_eror Avg.
Fraction

Error

1 10 -0.4400 200 30 -0.2803 0.1597 0.3629 0.4645 0.3000 -0.4214 0.0186 0.0422 0.0273

200 40 -0.2747 0.1653 0.3758 0.4000 -0.4276 0.0124 0.0282

300 50 -0.2072 0.2328 0.5291 0.5000 -0.4337 0.0063 0.0143

100 40 -0.2546 0.1854 0.4213 0.6000 -0.4280 0.0120 0.0274

100 50 -0.1614 0.2786 0.6333 0.7000 -0.4293 0.0107 0.0244

2 5 -0.1100 300 30 0.1595 0.2695 2.4502 1.7685 0.3000 -0.1122 0.0022 0.0197 0.1101

300 40 0.0246 0.1346 1.2233 0.4000 -0.1147 0.0047 0.0429

200 30 0.1571 0.2671 2.4280 0.5000 -0.1190 0.0090 0.0816

200 40 0.0210 0.1310 1.1910 0.6000 -0.1332 0.0232 0.2112

200 50 0.0605 0.1705 1.5502 0.7000 -0.1314 0.0214 0.1950

5 51 0.5300 200 30 0.6491 0.1191 0.2247 0.3478 0.3000 0.5111 0.0189 0.0356 0.0618

200 50 0.2742 0.2558 0.4826 0.4000 0.5097 0.0203 0.0383

300 30 0.6548 0.1248 0.2354 0.5000 0.5036 0.0264 0.0498

300 40 0.3457 0.1843 0.3477 0.6000 0.4952 0.0348 0.0657

100 40 0.3519 0.1781 0.3360 0.7000 0.4881 0.0419 0.0791

100 50 0.2860 0.2440 0.4603 0.8000 0.4757 0.0543 0.1024

27 8 0.2800 200 30 0.1275 0.1525 0.5448 0.3618 0.3000 0.2700 0.0100 0.0357 0.0570

200 40 0.2498 0.0302 0.1080 0.4000 0.2708 0.0092 0.0329

300 40 0.2502 0.0298 0.1065 0.5000 0.2700 0.0100 0.0356

300 50 0.1461 0.1339 0.4781 0.6000 0.2585 0.0215 0.0767

100 30 0.1359 0.1441 0.5145 0.7000 0.2567 0.0233 0.0832

100 50 0.1626 0.1174 0.4193 0.8000 0.2582 0.0218 0.0780

501 76 0.5400 200 30 0.3473 0.1927 0.3569 0.3834 0.3000 0.5272 0.0128 0.0237 0.0208

200 40 0.2491 0.2909 0.5388 0.4000 0.5273 0.0127 0.0235

300 40 0.2479 0.2921 0.5409 0.5000 0.5261 0.0139 0.0257

300 50 0.6755 0.1355 0.2510 0.6000 0.5308 0.0092 0.0170

100 30 0.3490 0.1910 0.3537 0.7000 0.5307 0.0093 0.0173

100 50 0.6798 0.1398 0.2588 0.8000 0.5306 0.0094 0.0174

VI REFERENCES

[1] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T.

Hastie, R. Tibshirani, D. Botstein, and R.B.Altman, “Missing

value estimation methods for DNA microarray”.

Bioinformatics, 17, 520–525, 2001.

[2] H. Kim, G. H. Golub, and H. Park, “Missing value

estimation for DNA microarray gene expression data: local

least squares imputation”, Bioinformatics, 21, 187 – 198,

2005

[3] S. Chakraborty, S. Saha, K.N.Dey, “Modified

SVDImpute Algorithm for Estimating Missing Values in a

DNA Microarray”, IEEE EDS Student Conference 2011,

Jointly Organized by HIT-K & IEEE EDS Calcutta Section,

April 2011

[4] O. Alter, P. O. Brown, and D. Botstein “Singular value

decomposition for genome-wide expression data processing

and Modeling”. Proc. Natl Acad. Sci. USA, 97, 10101–10106,

2000.
[5] G. H. Golub and C. F. van Loan “Matrix

Computations”; 3rd edn. Johns Hopkins University
Press, Baltimore, CA, 1996.

[6] M. P. Brown, W.N. Grundy, D. Lin, N. Cristianini, C. W.

Sugnet, T. S. Furey, M. Ares,Jr. and D. Haussler (2000)

“Knowledge based analysis of microarray gene expression

data by using support vector machines”. Proc. Natl Acad. Sci.

USA, 97, 262–267, 2000.

[7] S. Raychaudhuri, J. M. Stuart and R. B. Altman

“Principal components analysis to summarize microarray

experiments:application to sporulation time series”. Pa Symp.

Biocomput., 455–466, 2000.

[8] G. N. Wilkinson “Estimation of missing values for the

analysis of incomplete data”. Biometrics, 14, 257–286, 1958.

[9] Y. Yates “The analysis of replicated experiments when

the field results are incomplete.” Emp. J. Exp. Agric., 1, 129–

142, 1933

