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Abstract - DNA microarray technology which is 

used in molecular biology, allows for the 

observation of expression levels of thousands of 

genes under a variety of conditions. The analysis of 

microarray data has been successfully applied in a 

number of studies over a broad range of biological 

disciplines. Now it is very unfortunate that various 

microarray experiments generate data sets 

containing missing values. Since most of the 

algorithms for gene expression analysis require a 

complete gene array as input, the missing values 

need to estimate. The methods exist for estimating 

missing values are like KNNimpute, SVDimpute, 

LLSimpute, LLS-SVDimpute etc. In this paper we 

present a new fuzzy technique Fuzzy Difference 

Vector Impute (FDVimpute) for estimating missing 

values in a DNA microarray. 
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I. INTRODUCTION 

Gene expression microarrays provide a popular 
technique to monitor the relative expression of 

thousands of genes under a variety of 

experimental conditions. In spite of the 

enormous potential of this technique, there 

remain challenging problems associated with the 

acquisition and analysis of microarray data that 

can have a profound influence on the 

interpretation of the results. 

Gene expression microarray 

experiments can generate data sets with multiple 

missing expression values [1]. Unfortunately, 
many algorithms for gene expression analysis 

require a complete matrix of gene array values as 

input. Methods such as hierarchical clustering 

and K-means clustering are not robust to missing 

data, and may lose effectiveness even with a few 

missing values. Methods for imputing missing 

data are needed, therefore, to minimize the effect 

of incomplete data sets on analyses, and to 

increase the range of data sets to which these 

algorithms can be applied. There are several 

ways to deal with missing values such as 

deleting genes with missing values from further 

analysis, filling the missing entries with zeros, or 
imputing missing values of the average 

expression level for the gene 

 Missing values can lead to erroneous 

conclusions about data and substitution of 

missing values may introduce inaccuracies and 

inconsistencies. These values can negatively 

impact discovery results, and errors or data 

skews can proliferate across subsequent runs and 

cause a larger, cumulative error effect. As well, 

most analysis methods cannot be performed if 

there are missing values in the data. Missing 

values may also prevent proper classification and 
clustering. 

 So the proper and more accurate 

prediction of Missing values remains an 

important step on the way to get better results. 

The goal of missing value is to represent an 

accurate data set of genes, species, etc. A variety 

of approaches have been proposed for estimating 

missing values in DNA microarrays. Some of 

these methods are very complex and take a lot of 

time, while other having less accuracy.  

The organization of the article is as 
follows: In section II, we describe some already 

existing methods for estimating missing values. 

Section III presents the proposed missing value 

estimation method. In section IV, we provide 

experimental results along with comparisons. 

Section V discusses about Conclusion & Future 

scope. 

 
II  EXISTING METHODS 

There are several methods to estimate missing 

values in a DNA microarray dataset. Four among 

them are briefly described as follows: 

 

 

LLSimpute Algorithm 

 

Local least square imputation method 

(LLSimpute) represents a target gene that has 
missing values as a linear combination of similar 

genes [2].  The similar genes are chosen by k-
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nearest neighbors or k coherent genes that have 

large absolute values of Pearson correlation 

coefficients.  

G denote a gene expression data matrix with m 

genes and n experiments and assume m > > n (G 

is a nm matrix). In the matrix G, a row gi 

represents the ith row with n experiments ( n1  

matrix).  
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A missing value in the lth location of the ith gene 

is denoted as α, i.e. G (i, l) = gi (l) = α. There are 

two steps in the LLSimpute method. 

First step is to select k (k < m) other genes with 

expressions most similar to that of g1 and with 

the values in their first positions not missing. 

The second step is regression and estimation, 

regardless of how the k genes are selected To 

recover a missing value α in the first location 

g1(1) of g1 in G the k-nearest neighbor gene 

vectors for g1 are found for LLSimpute. In this 
process of finding the similar genes, the first 

component of each gene is ignored following the 

fact that g1(1) is missing. Now there are several 

metric to choose K similar Genes such as, 

Euclidian Metric, Pearson Coefficients etc. The 

LLSimpute using the Pearson Coefficients to 

select k genes is referred as LLSimpute/PC. 

 Based on these k-neighboring gene 

vectors, the matrix 
)1(  nkRA  and the two 

vectors 
1 kRb  and

1)1(  nRw  are formed. 

The k rows of the matrix A consist of the k-

nearest neighbor genes ki 1,g si  with their 

first values deleted, the elements of the vector b 

consists of the first components of the k vectors 

sig  and the elements of the vector w are the n − 

1 elements of the gene vector g1 whose missing 

first item is deleted. After the matrix A and the 

vectors b and w are formed, the least squares 
problem is formulated as               

                             wxAT 
x

min                  

Then, the missing value α is estimated as a linear 

combination of first values of genes 

 

wbxb TT  )(A †T  Where (AT)† is 

the pseudo inverse of AT
. 

 

KNNimpute Algorithm 

 

This method is very much same as LLSimpute 

method except the estimation phase. This 

method selects genes with expression profiles 
similar to the gene of interest to impute missing 

values [1]. If we consider gene A that has one 

missing value in experiment 1, this method 

would find K other genes, which have a value 

present in experiment 1, with expression most 

similar to A in experiments 2–N (where N is the 

total number of experiments). A weighted 

average of values in experiment 1 from the K 

closest genes is then used as an estimate for the 

missing value in gene A. In the weighted average, 

the contribution of each gene is weighted by 

similarity of its expression to that of gene A. To 
recover a missing value α in the first location 

g1(1) of g1 in G the k-nearest neighbor gene 

vectors for g1 are found for KNNimpute. In this 

process of finding the similar genes, the first 

component of each gene is ignored following the 

fact that g1(1) is missing. There are several 

metric to choose K similar Genes such as, 

Euclidian Metric. 

 

SVDimpute Algorithm 

 
The SVDimpute method uses Singular Value 

Decomposition of matrices to estimate the 

missing values of a DNA micro array [1]. This 

method works in two steps. First it decomposes 

the Gene data matrix into a set of mutually 

orthogonal expression patterns that can be 

linearly combined to approximate the expression 

of all genes in the data set. SVD is based on a 

theorem from linear algebra which says that a 

rectangular matrix A can be broken down into 

the product of three matrices - an orthogonal 

matrix U, a diagonal matrix S, and the transpose 
of an orthogonal matrix V. The theorem is 

usually presented as follows 

                                 

T

nnnmmmnm VSUA ,,,,   

Let A be a matrix with m rows and n columns. 

Now the SVD method is applied on this matrix 

as follows: 

 
At first, AAT is computed, which is a square 

(Symmetric) matrix with m rows and m columns. 

So this matrix has m eigen values (Real no) and 

m corresponding eigen vectors. Let X be the set 

of eigen vectors of AAT, arranged according to 
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their corresponding eigen values (eigen values 

are sorted in descending order on their absolute 

values). So the columns of X are eigen vectors of 

AAT, Now normalized each columns of X to 

obtained the orthonormal matrix U.  Secondly, 

let Y be the set of eigen vectors of ATA, 
arranged according to their corresponding eigen 

values (eigen values are sorted in descending 

order on their absolute values).So the columns of 

Y are eigen vectors of ATA, Now normalized 

each columns of Y to obtained the orthonormal 

matrix V. Thirdly, compute the absolute values 

of the eigen values of AAT or ATA and construct 

a diagonal matrix S whose diagonal elements are 

the square roots of these values sorted in 

descending order. Once k most significant 

eigengenes from VT are selected, the missing 

value j in gene i can be estimated by first 
regressing this gene against the k eigengenes & 

then by using the coefficients of the regression to 

reconstruct j from a linear combination of the k 

eigengenes.  

 

LLS-SVDimpute Algorithm 

 

This algorithm is a modification of existing 

SVDimpute method. Since SVD can only be 

performed on complete matrices, the original 

SVDimpute algorithm first applies row average 
to substitute all missing values in A to obtain A‟.  

After that SVDimpute algorithm is applied on A‟ 

for estimating each missing values. But LLS-

SVDimpute algorithm [3] is different from the 

earlier version of SVDimpute in the initial filling 

of missing cells of a DNA microarray. LLS-

SVDimpute algorithm first applies LLSimpute 

method to estimate the missing cells initially, & 

then uses SVDimpute algorithm to approximate 

those values further. 

 

III  PROPOSED METHOD 
 

In all the existing methods for estimating 

missing values in DNA microarray, the most 

similar genes of the target gene are selected on 

the basis of certain metrics, like Pearson 

correlation coefficients, Euclidean distance etc.  

The genes will be selected if satisfy certain 

conditions, otherwise ignored. But this is a kind 

of crisp technique & it doesn‟t always produce 

good results. That‟s why we try to incorporate 

some fuzziness in the proposed method 
FDVimpute of estimating missing values.  

FDVimpute estimates the missing cells of 

datasets in two steps. The first step selects 

nearest (most similar) genes of the target gene 

(whose some component is missing) using Fuzzy 

Difference Vector algorithm. Then the missing 

cell is estimated by using least square feet on the 

selected genes in the second step.  

 

Selecting Neighboring Genes 

 

Given a dataset G of m genes y1, y2,  …. ym   

each of which have n dimensions. Now the 

difference vector Vi of the ith  gene yi is 

calculated as follows: 

Vi (k) = yi (k) - yi (k+1), 1 ≤ k≤ n-1    

Let‟s suppose mij contains the number of 

matches between the difference vectors Vi and Vj 

of the respective genes. A match in the kth 

component of the vectors Vi and Vj is 

determined by whether the sign of Vi (k) and Vj 

(k) is same or not. In this way we calculate the 
total number of matches between the ith and jth 

genes, that mij contains. Since it is a fuzzy 

approach, we define a membership function µ (i) 

for  i th gene as follows: 

          µ (i) = m(i)/(n-1) 

If the membership value of gene i is greater than 

the predefined threshold Ө then that gene will be 

selected as the neighboring gene of the target 

gene. 

The following Algorithm selects the most similar 

genes of the data matrix X with m rows & n 
columns where the 1st gene is treated as the 

target gene. That‟s why in the computation of the 

difference vectors the 1st component of each 

gene is ignored. 

 
Step 1: For i=1 to m do  // Constructs the difference   

                                                       //    table 

  For j=1 to n-1 do  

     diff_table (i, j) =X (i, j)-X (i, j+1)  

  End 

 End 

Step 2: For i=2 to m do // Computes the matches for   

                                                       //  membership function 
 m (i)=0 

             For j=1 to n-1  

 if (diff_table(1,j)*diff_table(i,j)>0) then 

  m (i)++ 

 End If 

             End 

            End 

             k=0 
Step 3: For i=2 to m do   // Selects the nearest genes 

                 µ (i) = m(i)/(n-1) 

    If µ(i)>Ө then                       

  k=k+1 
    For j=1 to n do 
       A(k,j)=X(i,j)    // A contains most similar   

                                                            // genes of target  
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     End 

   End If 

 End 

The time complexity of the above algorithm is O 

(m*n). 

 
Formulation of Least Square feet 

 

Based on these k gene vectors of  , the 

matrix 
)1(  nkRB  and the two vectors 

1 kRb  and
1)1(  nRw  are formed. The k 

rows of the matrix B consist of the k genes  of A 

with their first values deleted, the elements of the 

vector b consists of the first components of the k 
vectors  of A and the elements of the vector w 

are the n − 1 elements of the gene vector g1 

whose missing first item is deleted. After the 

matrix A and the vectors b and w are formed, the 

least squares problem is formulated as       

                             wxBT 
x

min                  

Then, the missing value α is estimated as a linear 

combination of first values of genes 

                             

wbxb TT  )(B †T   

Where (BT)† is the pseudo inverse of BT. 
                       

   bxbxbxx · · · b  1

T

 
 

IV   EXPERIMENTAL RESULTS 

 

We have applied our FDVimpute algorithm on 

„Spellman‟ data set, having 6025 genes and 

approximately 76 experiments in each gene. The 

algorithm is coded with MATLAB 6.5 & run on 

an Intel Pentium IV computer with 3.06 GHz 

Processor and 256 RAM. The parameters „Error‟ 

& „Fraction_eror‟ will be calculated by 

|Estimated_value – Original_value| and 
|Error/Original_value| respectively. The 

performance measure of various methods depend 

on the parameter „Fraction_eror‟, as it lowers the 

accuracy is better. 

Since we know that LLS-SVDimpute method 

shows better results than earlier KNN & 

SVDimpute methods in most of the cases, the 

following table TABLE 1 displays the 

comparative results for some of the experiments 

between the proposed FDVimpute & LLS-

SVDimpute.  

The Comparison of results are shown using 

performance diagrams drawn on the basis of the 

parameter „Average Fraction Error‟ as follows: 

 

 
 

 

 

V  CONCLUSION 

 

Considering the above results and diagrams of 

the experiments done on the “Spellman” dataset 

we can conclude that FDVImpute produces 

better results than LLS-SVDImpute algorithm. 

So, this proposed method is so far best among all 

the methods exist to estimate missing values of a 
DNA microarray. Since FDVImpute is a Fuzzy 

approach, so the performance can be improved 

by taking a more efficient membership function 

µ in the selection algorithm and the appropriate 

choice of the threshold Ө. 
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TABLE 1 

 

Comparison of the Results of the proposed FDVimpute method with LLS-SVDimpute 
 

   
LLS-SVDimpute Result FDVimpute Result 

Row 
 

Col Ori_val K(LLS) K(SVD) Esti_val Error Frac_eror Avg. Fraction 
Error 

Ө Esti_val Error Frac_eror Avg. 
Fraction 

Error 

1 10 -0.4400 200 30 -0.2803 0.1597 0.3629 0.4645 0.3000 -0.4214 0.0186 0.0422 0.0273 

200 40 -0.2747 0.1653 0.3758 0.4000 -0.4276 0.0124 0.0282 

300 50 -0.2072 0.2328 0.5291 0.5000 -0.4337 0.0063 0.0143 

100 40 -0.2546 0.1854 0.4213 0.6000 -0.4280 0.0120 0.0274 

100 50 -0.1614 0.2786 0.6333 0.7000 -0.4293 0.0107 0.0244 

2 5 -0.1100 300 30 0.1595 0.2695 2.4502 1.7685 0.3000 -0.1122 0.0022 0.0197 0.1101 

300 40 0.0246 0.1346 1.2233 0.4000 -0.1147 0.0047 0.0429 

200 30 0.1571 0.2671 2.4280 0.5000 -0.1190 0.0090 0.0816 

200 40 0.0210 0.1310 1.1910 0.6000 -0.1332 0.0232 0.2112 

200 50 0.0605 0.1705 1.5502 0.7000 -0.1314 0.0214 0.1950 

5 51 0.5300 200 30 0.6491 0.1191 0.2247 0.3478 0.3000 0.5111 0.0189 0.0356 0.0618 

200 50 0.2742 0.2558 0.4826 0.4000 0.5097 0.0203 0.0383 

300 30 0.6548 0.1248 0.2354 0.5000 0.5036 0.0264 0.0498 

300 40 0.3457 0.1843 0.3477 0.6000 0.4952 0.0348 0.0657 

100 40 0.3519 0.1781 0.3360 0.7000 0.4881 0.0419 0.0791 

100 50 0.2860 0.2440 0.4603 0.8000 0.4757 0.0543 0.1024 

27 8 0.2800 200 30 0.1275 0.1525 0.5448 0.3618 0.3000 0.2700 0.0100 0.0357 0.0570 

200 40 0.2498 0.0302 0.1080 0.4000 0.2708 0.0092 0.0329 

300 40 0.2502 0.0298 0.1065 0.5000 0.2700 0.0100 0.0356 

300 50 0.1461 0.1339 0.4781 0.6000 0.2585 0.0215 0.0767 

100 30 0.1359 0.1441 0.5145 0.7000 0.2567 0.0233 0.0832 

100 50 0.1626 0.1174 0.4193 0.8000 0.2582 0.0218 0.0780 

501 76 0.5400 200 30 0.3473 0.1927 0.3569 0.3834 0.3000 0.5272 0.0128 0.0237 0.0208 

200 40 0.2491 0.2909 0.5388 0.4000 0.5273 0.0127 0.0235 

300 40 0.2479 0.2921 0.5409 0.5000 0.5261 0.0139 0.0257 

300 50 0.6755 0.1355 0.2510 0.6000 0.5308 0.0092 0.0170 

100 30 0.3490 0.1910 0.3537 0.7000 0.5307 0.0093 0.0173 

100 50 0.6798 0.1398 0.2588 0.8000 0.5306 0.0094 0.0174 
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