

94

RC4: An analysis with respect to Randomness

 Shradha Gautam
*%

 Kewal Krishna
* +

 Anisur Rahman
*

*
Computer Science & Engineering

 National Institute of Science & Technology

 Berhampur, Orrisa
 %shradhagautam15@gmail.com +kewal07@gmail.com #anisur.rahman96@gmail.com

Abstract— the paper aims to study one of the most widely used

stream cipher, RC4. The bytes generated by the Psedo Random

Generator Algorithm (PRGA) of RC4 are evaluated to check the

randomness. Some widely known and accepted statistical

measures are applied for this purpose. This is then followed by

modifying the initial primitive key fed to RC4 using the system

clock and compared with the initially generated bytes.

Keywords—RC4, PRGA, Randomness, System Clock

I. Introduction

RC4 is the most widely used stream cipher. It is used in many

popular applications such as Secure Socket Layer and Wired

Equivalent Privacy. The cipher was designed by Ron Rivest in

1987. However it was kept a trade secret until September 1994

when a description of it was anonymously posted to the

Cypherpunks mailing list. The leaked code was confirmed to

be genuine as its output was found to match that of proprietary

software using licensed RC4. The main factors in RC4's

success are its speed and simplicity; efficient implementations

in both software and hardware are very easy to develop [1,2].
RC4 is a shared key stream cipher algorithm requiring a secure

exchange of the secret key. The algorithm is used identically

for encryption and decryption as the data stream is simply

XORed with the generated key sequence. The algorithm is

identical in the sense that as it is a symmetric key cipher, the

key for encryption and decryption are the same. The algorithm

is serial as it requires successive exchanges of state entries

based on the key sequence.

This paper aims to study the bytes generated by the PRGA of
RC4. The initial seed provided by the user is fed to the

algorithm to generate the final key for encryption which may

be greater in length than that given by the user. A fundamental

requirement of the generated key stream is to be sufficiently

random in nature to prevent the cipher text from being

deciphered by an adversary. Intensive studies over the past

two decades have shown that the generated key stream is not

random as one would like it to be. This paper performs some

basic randomness tests on the key stream and observes the

results in a comparative fashion with those generated from the
initial random seed modified with the system clock. The

different biases observed in the rich literature of RC4 till now

and explanation of them is outside the scope of this paper; the

interested reader may look into [2,3,4] and the references

therein for further details.

II. Description of RC4

RC4 uses a variable length key from 1 to 256 bytes to
initialize a 256-byte state table. This table is used for

generation of pseudo-random bytes. This work is performed in

the first phase of the algorithm known as the Key Scheduling

Algorithm (KSA). The output from the KSA is then given as

input to the second phase known as the Pseudo Random

Generation Algorithm (PRGA). The PRGA generates the key

stream which is then XORed with the message to obtain the

cipher text. This is equivalent in some respect to the Vernom

cipher.

 The key is often limited to 40 bits, because of export

restrictions but it is sometimes used as a 128 bit key. It has the

capability of using keys between 1 and 2048 bits [5].

A. The Key Scheduling Algorithm (KSA)

The key-scheduling algorithm initializes the permutation in

the state table, S. The number of bytes in the key, K, can be in

the range 1 to 256, typically between 5 and 16 bytes. S is

initialized to the identity permutation which is then processed

for 256 iterations swapping the values at different indices

between them using the key. The KSA provides the S table

which is used in the PRGA to get the final key. Figure 1 lays

out the algorithm in detail.

B. The Pseudo Random Generator
Algorithm (PRGA)

The S box generated from KSA is swapped within itself using
a known index and a random index. The random index is

generated successively using the values of the same from the

previous iteration. The S table is then swapped using these

values. The output byte is generated taking the modular

addition of the values at the index pointers. Figure 1 lays out

the algorithm in detail.

95

Figure 1: The KSA & PRGA

III. Modified Seed fed to RC4

The key stream generated by the algorithm of Figure 1 is not

as random as one would like it to be. Section 4 gives some

observations in support of this. To get a better key stream we
modify the secret key. The initial random seed provided by the

user is treated as plaintext. The system clock is used as the

encryption key. We use the concept of Vernam cipher to get a

more random key which is then used by subsequent phases of

the algorithm to get a more random key stream. The generated

key stream is then XORed with the original plain text. Figure

2 lays out the detailed methodology.

Figure 2: Flowchart for the modified seed fed RC4

IV. Observations & Discussions

We perform various tests to examine the randomness of the

key stream generated by the original RC4 and the RC4 with

the modified key stream. We have taken 8938 common words
of 5 bytes each[6] in order to perform these tests and operate

for 256 rounds.

A. Mono Bit Test

Mono bit test is used to count the number of 1’s and 0’s of the

key stream. The statistic generated from all the words, if

random, would follow a normal distribution. Figure 3 shows

the plots for mono bit test for both the above stated algorithms.

As is clear from the normal probability plot, the statistic
values are not found lying on the true random line. However,

Figure 3 makes it clear that the key stream generated using the

modified key RC4 is somewhat more random. This needs to

be verified mathematically because the curves lie close

together.

B. Serial Test

Serial Test is used to determine whether the number of
occurrences of 00, 01, 10, and 11 as subsequences are

approximately the same, as would be expected for a random

sequence. The plots for both the generated key streams are

shown in Figure 4. Once again it is clear that the algorithm

with system clock provides better randomness.

C. Poker Test

Poker Test Determines whether the sequences of length m
each appear approximately the same number of times, as

would be expected for a random sequence. We have taken m

96

to be of 1 byte. The plots in Figure 5 show that key stream

with the system clock provide better randomness.

 Figure 3: Normal Probability plots for frequency test for (i) original RC4 (ii) modified seed fed to RC4

 Figure 4: Normal Probability plots for serial test for (i) original RC4 (ii) modified seed fed to RC4

Figure 5: Normal Probability plots for poker test for (i) original RC4 (ii) modified seed fed to RC4

97

Figure 6: Normal Probability plots for runs test for (i) original RC4 (ii) modified seed fed to RC4

D. Runs Test

The purpose of runs test is to determine whether the number of

runs of either 0s or 1s of various lengths in the sequence is as

expected for a random sequence. The plots for both the

generated key streams are shown in Figure 6. An interesting

observation is that while the norm plots seem in favor of

modified RC4, when tested with the statistical parameters of

chi square tests,[7,8] the modified seed fed algorithm fails
miserably as shown in Appendix.

As is clear from the table given in Appendix, the resuls are

much better in case of seed modified with the system clock

except that for runs test. This is a unique phenomenon because

intuition as well as literature suggests otherwise. Table I

shows the chi square hypothesis test results for randomness

with the hypothesis being that the sequence is random. The
significance level α is the probability of rejecting the

hypothesis when it is true. To achieve a significance level of α,

a threshold value Xα is chosen corresponding to the degree of

freedom using the chi square distribution table. If the value of

the statistic Xs of the output sequence satisfies Xs > X α then

the sequence fails the test; otherwise it passes the test.

V. Conclusion & Future Work

The modified key RC4 performs better than the simple RC4. It

yields more random key stream than that of the one without

using system clock. It is found that for Poker test the generated

key stream is most close to being random. This is an
interesting observation because the size of m we took was 1

byte. Also, the observation for the runs tests is peculiar. While

the norm plot lies approximately on the ideal line, the same

when taken for chi square tests deviate almost completely. The

reason behind this is to be investigated. The effect of different

sizes and number of iterations on the same is a prospective for

future work. The same key stream when tested using mono bit

and serial test shows significant deviations as compared to the

Poker test. In mono bit test, the plots from both the algorithms

were identical to an extent greater than that of other tests.

These issues, along with the modification of generated

keystream instead of the initial seed using the system clock

and overcoming the limitation of storing the keystream for
decryption purposes as it keeps on changing with time

constitute the authors’ future work.

References

[1] Cypherpunks mailing list., “Thank You Bob Anderson ” 1994-09-09.

Retrieved 2007-05-28

[2] Souradyuti Paul and Bart Preenel, “A New Weakness in the RC4 Key

Stream Generator and an Approach to Improve the Security of the
Cipher”, FSE 2004, LNCS, Springer-Verlag, pp. 245-259, 2004

[3] Itsik Mantin and Adi Shamir, “A Practical Attack on Broadcast RC4”,

FSE 2001, LNCS, Springer-Verlag, pp. 152-164, 2001

[4] S Maitra, G Paul and S Sen Gupta, “Attack on Broadcast RC4
Revisited”, FSE 2011,LNCS, Springer-Verlag,, Denmark

[5] RC4 data sheet, VOCAL Technologies, Ltd., 2011

[6] TWL2006 and CSW2007, available online at,

"http://www.poslarchive.com/math/scrabble/lists/common-5.html"

[7] A Menezes, P Van Oorschot, S Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996

[8] Donald E Knuth, The Art of Computer Programming, Volume 2, 3
rd

edition, ADDISON-WESLEY, 1999

http://en.wikipedia.org/wiki/Cypherpunks
http://web.archive.org/web/20080404222417/http:/cypherpunks.venona.com/date/1994/09/msg00304.html

98

Appendix

TABLE I. Chi square tests

α Test Deg of freedom X α
No of

Xs > X α
% Failure

0.0057

Mono Bit Figure1

1

7.8794

51

0.5705

Mono Bit Figure2

44

0.4922

Serial Figure1

2

10.5966

54 0.6041

Serial Figure2 47 0.5258

Poker Figure1

255

316.9194

62 0.6936

Poker Figure2 49 0.5482

Runs Figure1

10

25.1882

79 0.8838

Runs Figure2 8664 96.9344

0.01

Mono Bit Figure1

1

6.6349

100

1.1188

Mono Bit Figure2

78

0.8726

Serial Figure1

2

9.2103

108 1.2083

Serial Figure2 87 0.9733

Poker Figure1

255

310.4574

94 1.0506

Poker Figure2 108 1.2083

Runs Figure1

10

23.2093

132 1.4768

Runs Figure2 8764 98.0532

0.025

Mono Bit Figure1

1

5.0239

261

2.9201

Mono Bit Figure2

240

2.6851

Serial Figure1

2

7.3778

258 2.8865

Serial Figure2 209 2.3383

Poker Figure1

255

301.1250

252 2.8194

Poker Figure2 244 2.7299

Runs Figure1

10

20.4832

319 3.5690

Runs Figure2 8841 98.914

0.05

Mono Bit Figure1

1

3.8415

469

5.2472

Mono Bit Figure2

452

5.0570

Serial Figure1

2

5.9915

502 5.6164

Serial Figure2 461 5.1577

Poker Figure1

255

293.2478

482 5.3927

Poker Figure2 463 5.1801

Runs Figure1

10

18.307

605 6.7688

Runs Figure2 8890 99.4629

