

53

Efficient Firewall Designing using Ant Colony

Optimization

 and Hierarchical Distribution

Tanveer Ahmed

University School of Information Technology

M.Tech CSE,GGSIPU, Dwarka

New Delhi, India

tanveerhmd88@gmail.com

Jyotsna Singh

University School of Information Technology

GGSIPU, Dwarka

New Delhi, India

Abstract— A firewall is a security guard placed at the point of

entry between a private network and the outside Internet such

that all incoming and outgoing packets have to pass through it.

The function of a firewall is to examine every incoming or

outgoing packet. Here the paper aims to implement ACO (ant

colony optimization) in the design process thereby allowing better

filtering of the packets. The design of the firewall will be based on

matching the rules and remembering the rules accessed by laying

down pheromone. In practical situations multiple request for the

same rule(same host and destination) arrives at the filtering

router, if we are able to speed up the entire lookup process then a

high access rate and throughput can be achieved. In other words,

by comparing the packet’s field values we first isolate the given

rule in the rule set and then cache it in to speed up further lookup

processes, also remembering the entire rule can increase the

duration for which the rule will remain in the fast storage area.

The idea is based on the fact that multiple requests for the same

rule arrive at the filtering station. The rules here also contain a

field indication the pheromone deposition value, whose rate of

evaporation is governed by external factors like timers,
environment variables, network congestion access frequency etc.

Keywords— Network Security, Artificial Intelligence,

Firewall .

I. Introduction
A firewall is a device or set of devices which allows or deny

network transmissions based upon a set of rules and is

frequently used to protect networks from unauthorized access

while allowing legitimate transmissions to continue. A firewall
is one of the most crucial part of the organization whether

private or government. It is placed at the entry point between

the internal and the external network, it filters out the data

based on packet contents. A firewall can operate in at most 3

layers of the TCP/IP model.

Circuit-Level Gateway: They work at the session layer of the

OSI model and monitor TCP handshaking between packets to

determine whether a requested session is legitimate or not.

Network layer: These firewalls operate at a relatively low

level of the TCP/IP protocol stack, not allowing packets to

pass through the firewall unless a match is found.

Application-layer filter: Application-layer firewalls work on

the application level of the TCP/IP stack and intercept all
packets traveling to or from an application.

The firewall at the top most layer i.e. application layer deals

with a lot of traffic. Such traffic contain huge amount of

information whether authentic or unauthentic, which

sometimes can become real tricky to detect, so this part of the

system is the one where the real risk lies. The content of such

illegal traffic can therefore pass through a loophole and can

cause serious damage. If such filtering can be assisted with the

help of other mechanism then the overall security can be

increased very effectively. Here in this paper we present a

mechanism to deal with network layer packet filtering using
ant colony optimization. In the paper we have used the

terminology of rule set, which comprises of all the fields of an

IP Packet that helps in correctly invoking the proper action

against filtering of the packet. Sample rule set is shown below.

Table 1. Sample Rule Set

Source IP Destination IP Source

Port

Destination

Port

192.168.1.13 192.168.1.154 3306 3306

Packet filtering takes place at the network level, the following

stack show the flows of IP Datagrams at the network layer.

54

II. Ant Colony Optimization
Ant colony optimization can be considered to be flock of ants

trying to find their route to the food and back to the colony, in
the process first an ant agent traverses the path based on the

likelihood of finding food, after that it lays down the

pheromone in order to remember the path traveled. In simple

terms a scout here interacts with the external system, based on

the observations of the scout future operations are executed.

Now a days computer science is trying to map every single

opportunity to map the real world into computer model which

would help us solve our problem in a rather optimistic way by

the process of selection and evolution. Flocks of ants try to

find their route to the source of food, in computer world there

are rules which direct these kinds of searches. Since flocking

arise from such rules therefore the possibility that an unknown
rule can be accepted by the agents is unlikely. These rules

comprises of the rule set. The ant agent in this case first moves

through the rule set and lays down pheromone. This

pheromone information will direct the search of the future

ants. Furthermore, an ACO algorithm uses the mechanism of

trail evaporation. Trail evaporation decreases all trail values

over time, in order to avoid infinite accumulation of trail for a

particular component. To accomplish this daemon processes

can be used, these daemon procedures can be used to update of

global information responsible for biasing the search process.

The algorithm for ACO can be summarized below
Initialize parameters which determines the pheromone trail

While (solution found)

Do

Generate Solutions

Apply Local Search

Update Pheromone Trail

End

III. Related work
The simplest approach to designing the firewall would be to

match the rules sequentially, the resulting complexity of the
system would be O(n), In [1], a firewall was proposed which

matches the k fields in the rule set, thought the complexity of

the system increased to O(n
2
). In [3] a binary search based rule

filter is proposed the complexity of the system gradually

decreased to O(log n), but with an additional overhead of

maintaining the rule set in sorted form. In [4], an efficient

filtering algorithm was proposed whose complexity is O(log n)

but again the filtering rule set has to be present in sorted

manner.

IV. Proposed Firewall Model

Packet filters are based on the fact that multiple attributes
contribute is the decision of whether dropping or accepting the

packet at that moment. Routers operate at network layer

providing functionality for such filtering. The attributes that

contribute for the filtering process are Source IP address,

Destination IP address, Source Port Number, Destination Port

Number. The firewall compares these particular fields of the

incoming packets and makes it’s decision whether to accept or

drop the packet.

Mathematically, a firewall is set of rules which are defined as:

<Action><Decision>

where a rule is defined as

R(i)=a(1) ∪a(2) ∪a(3) ∪a(4) ∪a(5)……….. a(n)

R(i) = ith rule
a(i) = ith attribute

Also, decision ∈ {accept, discard}

Fig 2. Decision Tree comprising of rules.

In the algorithm proposed first the IP address is converted to

its numerical format. Sample format is shown in the table
below

Table 2. Numerical Format Conversion

IP Address Numeric equivalent

192.168.1.13 192168001013

10.10.0.5 010010000005

55

ACO based firewall filters the rules present in the rule set. The

rule checker first checks the rules in the rule set then based on

the various detection units in the firewall, packets are filtered.

First the filtering starts with the source and destination IP

address then the algorithm checks for the source and

destination port numbers in the port checking unit. The
combined result of the IP and Port checker together constitute

the rule being selected and packet being filtered.

A. Packet Filtering
In this following example we have used only 3 rule set

although the number of rule sets can be increased as per

requirements. Though the number of rule sets can vary from

organization to organization but we strongly recommend to

limit the rule sets to 3-5 as more rule set means more tuples to

scan for finding a particular rule. The following example

shows the rule and their access for 3 rule sets. Master rule set

here is one contains all the rule sets. Sample rules of the
master rule set can be summarized in the following tables.

Table 3. Sample Master Rule Set

Source IP Destination IP Source

Port

Dest

Port

Phval Decision

192168001013 192168010010 80 80 0 Accept

010010000001 010010000005 * 3306 0 Accept

194027251021 172016112100 1169 6859 0 Deny

202154125203 203201145165 80 28 0 Deny

154155158201 200012057125 * * 0 Deny

198157045023 198001157124 3306 * 0 Accept

After some of the rules have been accessed from a particular

rule, they are propagated to the next level, the propagated rules

are summarized in the following table.

Table 4. Rule Set in the next hierarchical Rule Set

Source IP Destination IP Source

Port

Dest

Port

Phval Decision

192168001013 192168010010 80 80 1 Accept

194027251021 172016112100 1169 6859 1 Deny

154155158201 200012057125 * * 1 Deny

Again if the same rule is accessed then the rule in the next

higher hierarchy is accessed not the master rule set.

Table 5. Rule Set in the next hierarchical Rule Set

Source IP Destination IP Source

Port

Dest

Port

Phval Decision

192168001013 192168010010 80 80 2 Accept

154155158201 200012057125 * * 2 Deny

If the rules in the 3rd rule set is accessed the amount of

pheromone deposition is increased but only to a certain level

due to the environment constraints. In table 5 it is considered

that the same rules are accessed 4 more times. The max

pheromone deposition in this case is limited to 6.(though it can

be changed depending on the requirements) only.

Table 6. Rules accessed multiple times

Source IP Destination IP Source

Port

Dest

Port

Phval Decision

192168001013 192168010010 80 80 6 Accept

154155158201 200012057125 * * 6 Deny

The importance here is that as we go up in the hierarchy of the

tables the access time is considerably reduced. As soon as a

rule is identified in a particular rule set at any level,, it is

propagated up in the hierarchy thereby the access time of the

rule is decreased.

The following figure shows the hierarchy of the rule sets used

in the methodology.

 Figure 3. Hierarchy of Rule Sets
It can be thought of an analogous to the memory divided into n

level. The rule accessed at any level is propagated 1 level up

in the hierarchy. The highest level is fastest as it contains only
a limited number of rules and is present in the fast access

storage (cache memory). A particular level is governed by an

associated ph value. For e.g. for rule set at level n the phval

can be n-1, for that at level n-1 it is n-2, for level 1 it is

always zero as this level is the one where all the rule for

filtering are present i.e. it is the master rule set (analogous to

the hard disk in a cache memory scheme).

B. Rule Matching

Rule Set (n)

Rule Set(n-1)

-

-

Rule Set(3)

Rule Set(2)

Rule Set(1)

56

As shown in the above tables the rules in the rule set consist of
various fields which are Source IP address, Destination IP

address, Source Port, Destination Port. All the fields are

checked in their separate units the units operate in parallel;

these units in turn determine the likeliness of the rule to be

selected.

 Figure 4. Scenario for parallel checking units

The behavior here loosely resembles the likeliness concept of

ACO. The following flowchart shows the functionality of this

behavior. Likeliness is probability of a rule found most

suitable for the particular Datagram. The likeliness here is

determined by the variable L(i,j), where L(i) means the

likeliness of the i th rule of j th rule set. For every unit if the

field of the incoming packet matches that of the rule in the rule

set then the likeliness of that rule can be thought to increase.

For every unit the increment of .25 in the likeness takes place

only if the rule`s field matches that of datagram’s field. Only
the rule/ rules whose likeliness is equal to 1 are allowed to

take part in the selection process. Since there are 4 fields

therefore, value of 1 is considered appropriate. For packets

with likeliness value less than 1, are dropped by the firewall.

In simple terms as soon the packet has passed through the IP

checker the overall likeliness of the rule is increased by a

factor of ½ only both the destination and source IP address

matches. Similarly likeliness is increased to 1 if the port

checker also conforms the presence of a rule for the particular

datagram.

Figure 5. Flowchart for likeliness calculation

V. Algorithm for packet filtering
In the following algorithm we have considered only three rule

sets - ant1, ant2, ant3 (low to high manner). To simulate

evaporation of pheromone, timers are set to t1 and t2 seconds

for ant3 and ant2, no timer was utilized for ant1 as in this case

it is the master rule set and will be accessed only if the rule are

not found in any of the higher rule sets. The time periods of

the timers here are flexible and can be set on the fly. As soon

as the phval of the rules is zero that is as soon as the

pheromone deposition of the particular rule has been destroyed

that rule is removed from the higher rule but it is still present

in the lower rule set. Here pseudo code of the algorithm is

shown, the algorithm first starts with converting the IP address
to it`s numeric format then comparing all the respective fields

with that of the rules in the rule set. If a match if found then

proper filtering is done else the packet is dropped. Here, the

packet could be dropped or even logged for further analysis.

Start_timer()

{

 /*start filtering the rule with the rule

set ant3*/

 access the ant3 to find the rule

57

 if (found)

 filter packet

 return

else if

/*if the rule is not found then access

ant2*/

access the ant2 to find the rule

if (found)

add rule to ant3

increase PHval by 1

filter packet

return

/* access the table ant1 that is the

master table which contains all the rules

*/

else if

access the ant1 to find the rule

if (found)

add rule to ant2

increase PHval by 1

filter packet

return

/*if the rules are not found then drop the

packet*/

 else

 add the rule to the log file for analysis

 return

/*here the timer is started to update the

pheromone values first the table ant3

updated and then the table ant2 if the

pheromone has completely evaporated then

the rule is removed from the rule set.*/

 if (timer_time>t1)

 {

 decrease PHval in ant3 by 1

if(phval==0)

remove rule

 }

for each rule removed from ant3

do{

 if (timer_time>t2)

 {

 decrease PHval in ant2 by 1

if(phval==0)

remove rule

 }

}

}

VI. Summary
In designing of the algorithm it can be seen that the

complexity of the system in best case is π(n) in the worst case

it is O(n).The following table summarizes the results

Table 7. Comparision with ACO-PF[4]

Name ACO-PF Firewall Proposed

Time Complexity O(ln n) π(n)

Space Complexity O(n) O(n*j)

Maintenance O(ln n + n) O(1)

Support for Cache No Yes

Here j is the number of rule sets utilized by the system.

References

[1]. E. Bonabeau, M. Dorigo and G. Theraulaz. Swarm Intelligence:

from natural to artificial

[2]. T.V. Lakshman and D. Stidiaslis, High speed policy-based packer

forwarding using efficient multi- dimensional range matching Proceedings of

SIGCOMM’98 (1998).

[3]. M. Waldvogel, G. Varghese, J. Turner and B. Plattner, Scalable high

speed ip routing lookups.

[4]. N.K. Sreelaja, G.A. Vijayalakshmi

PaiC:\Users\GATEXPERTS\AppData\Local\Temp\desktop\S1

56849461000075X.htm - fn1 Ant Colony Optimization based approach

for efficient packet filtering in firewall Applied Soft Computing Volume 10,

Issue 4, September 2010, Pages 1222-1236.

[5]. A. Hari, S. Suri, G.M. Parulkar, Detecting and resolving packet filter

conflicts, in: Proceedings of IEEE INFOCOM, 2000, pp. 1203–1212.

[6]. Mohamed G. Gouda, Alex X. Liu, Structured firewall design, Computer

Networks: The International Journal of Computer and Telecommunications

Networking, Volume 51 Issue 4, March 2007

file:///C:/Users/GATEXPERTS/AppData/Local/Temp/desktop/S156849461000075X.htm%23fn1
file:///C:/Users/GATEXPERTS/AppData/Local/Temp/desktop/S156849461000075X.htm%23fn1

