
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

148

A Survey of Cache Coherence Protocols in

Multiprocessors with Shared Memory

Manoj Kumar

Delhi Technological University

Delhi, India

mkg1109@rediffmail.com

Pooja Arora

Delhi Technological University

Delhi, India

poojaarora014@gmail.com

Abstract— Appropriate solution to illustrious Cache

Coherence Problem in shared memory multiprocessors

system is one of the crucial issue for improving system

performance and scalability. In this paper we have

surveyed various cache coherence mechanisms in

shared memory multiprocessor. Various hardware

based and software based protocol have been

investigated in depth including recent protocols. We

have concluded that hardware based cache coherence

protocol are better than software based protocol

according to presently available protocols, but

hardware based protocol have added the cost to

implement them. In comparison analysis of protocols on

SMP Cache simulator by varying certain parameters

we noticed that the Dragon Protocol is giving the best

results in terms of number of hits at great extent. As

software based cache coherence protocol are more

economical therefore more devotion is needed for

software based protocol as they show great promise for

future work.

Keywords—Shared Memory, Multiprocessors, Cache

Cohernce Problem, Hardware Based Protocol, Software

Based Protocol.

I. INTRODUCTION

These days the speed of processor is increasing
exponentially. Multiprocessors are the best type of
computer responsible for continuously increasing
computing power. Among these multiprocessors with
shared memory is the most efficient class of
multiprocessors. In 2000, the sales of shared-memory
systems with more than eight processors passed $16
billion [1]. In multiprocessors system with shared
memory, work load can be divided among these
processors therefore, they work faster than
uniprocessor. These systems allow the easier
development of parallel software and also can
increase the system throughput, reliability and they
are economical too.

The shared memory multiprocessors suffer with
significant problem of accessing shared resources in a
shared memory it will result in longer latencies
consequently the performance of the system will get
affected. With the object of solving the problem of
increased access latency due to large number of

processors with shared memory, Cache is being used.
Every processor has its own private cache, now they
can update or access the data comfortably but again it
leads to another serious issue i.e. cache coherence
problem.

Cache coherence problem arises when multiple
processes are trying to access the same data for
updating purpose or one processor is trying to modify
the data and rest processors are trying to read
simultaneously. It may lead to inconsistent state of
data at cache of different processors and the main
memory. We will discuss the solutions of cache
coherence problem in detail.

In shared memory multiprocessors system where
we can have multiple copies of same data in the
private cache of processor. If all the processors are
allowed to independently update the data then it will
lead to malfunction. This is the well-known
impression of cache coherence problem. We call the
cache of the system coherent only if every read
operation results in the value which is updated by
previous write operation, even by the process at any
other processor of that system. To resolve this
problem the system must comprise of some
mechanisms to maintain the coherent view of
memory and assures execution of program with
correct version data.

Cache coherence problem has attracted the
attention of various universities and companies in last
two decades. In fact the researchers had come out
with lots of solutions to this problem. This problem is
not only forcing the mal-functioning of the program
but also impacting the system performance
drastically. Efficiency of cache coherence depends on
system

II. BACKGROUND

On the basis of write operation Cache Coherence
Protocol can be categorized as [2]: 1.Write Update
2.Write invalidate. Difference between these two is
that when one processor issues write operation
Invalidate protocol modifies the copy of cache and
invalidates all other copies of that data block. In case
of update protocol it will not only write on that

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

149

processor’s cache which is trying to update but also
will forward this change to other existing copies. In
1993, Gee et al. compared invalidate, update, and
adaptive protocols for cache coherence in [3][4].
They showed that invalidate protocols were best for
vector data, update protocols were best for scalar
data, and adaptive protocols were the best on
average.

On the basis that how memory is updated we can
categorize these protocol as [2] : 1.Write Through
Protocol 2.Write Back Protocol. In write through
protocol, when processor tries to update the shared
data block, it will update in memory too. But in
write-back protocol when processor tries to update,
the main memory can be updated as:

 When the only valid copy of data block is
available in the processor and it replaces that
block

 When processor reads it from another

processor’s cache.

We can classify cache coherence mechanisms as:

1.Software-based solutions: These solutions
generally rely on compiler or operating system
dealing with coherence problem. Hardware-based
solution: This approach can deal with coherence
problem at run time.

If we compare these two strategies then we see
that though hardware based solutions are expensive
as it adds up new hardware cost but it is scalable up
to hundreds or thousands of processors [5]. But when
it come to software based solution, since it is not
adding any hardware so cost is not getting enhanced
but its scalable up to 32 processors only. And
software based protocol are not capable to deal with
coherence problem at run time.

III. HARDWARE BASED PROTOCOL

A. Snoopy Protocol

Snoopy Cache Coherence Protocol is primarily
suited for multiprocessors system with shared
memory that has bus with global interconnect, as the
shared bus provide very inexpensive and fast
broadcast to exchange coherence information among
processors. It strictly maintains consistent view of
data as any update done by the processor is
immediately visible to all other processors of that
system. But the shared bus becomes bottleneck for
large number of processors. Though it can be
resolved by increasing the bandwidth of the bus but
consequently it will increase the memory delay.
Therefore this protocol can be scaled up to 32
processors only[6].

B. Directory Based Protocol

In Directory Based Protocol the global system-
wide status information relevant for coherence
maintenance is stored in some kind of directory [7].
The responsibility of coherence is predominately
delegated to centralized directory controller. On
individual request from local cache controller, the
centralized controller checks the directory and issue
necessary command for transfer of data between
caches or cache and memory. It also keeps the
information about status, so that any local action
which can impact the global state of block must be
acknowledged to the central controller.

There is also a private cache, which keeps local
state information about cached block. We can
organize this global directory as [8]:

 Full Map Directory: In this all the
cache can have a copy of every data block,
i.e. each directory entry has P pointers
where P is a number of processors of that
multiprocessor system. The first protocol of
this class was developed in IBM 3081[9].

 Limited Directory: This scheme
reduces the size of directory by having
limited number of pointers for each entry in
the directory without any concern with
number of processors. The organization of
limited directory scheme is described in [10]

 Chained Directory: Chained
directory imitates the full map directory
scheme by distributing the directory among
caches. This scheme does not restrict the
number of copies of shared data block. It
actually keeps the track of shared data block
by maintaining a chain of directory pointers
and it does not use broadcast too that mean
it does not introduce any increase in the
traffic

These days many commercial multiprocessor
systems implement directory-based coherence
including the new SGI Origin which can have 1,024
processors in a maximal configuration.[11] Many
versions of directory schemes have been proposed
and many machines with hardware cache coherence
have been built [12] [13] [14] [15].

C. Hybrid Cache Coherence Protocol

As we know that different data block present
different access behavior, for this we require Cache
Coherence Protocol which is capable of applying
more than one protocol, is known as Hybrid Cache
Coherence Protocol. This protocol has potentially
enhanced the performance of multiprocessor system.
It uses two basic protocol viz. invalidate protocol and
update protocol[16][17].

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

150

In Hybrid Cache Coherence Protocol we have
decision function as quintessence, which selects the
appropriate protocol prior to or during execution of
the program. The decision function is classified as:1.
Online Decision function. 2. Offline Decision
Function. In Dynamic or Adaptive Hybrid Cache
Coherence protocol, the shared data block residing in
specific cache might get updated during the execution
of an application. Hybrid Cache Coherence Protocol
is also known as Competitive Update Protocol. The
performance of this protocol is not good when we
have migratory data i.e. data which is read or
modified by multiple processors.

D. Lock Based Protocol

This Lock Based Cache Coherence Protocol is
improvement of Directory based protocol presented
in [18]. This is more promised towards scalability
than directory based scheme by implementing scope
consistency. The scope consistency is a compromise
between lazy release consistency and entry
consistency [18]. In this mechanism we do not have
directory. All the memory coherence actions are
taken through reading and writing to and from lock,
which takes care of shared memory. When lock gets
released it sends all the write notices to the home of
the lock and all the modified memory lines. On
acquisition of lock, processor knows from the home
of the lock that which lines have been modified and
can also access those modifications. This mechanism
is more scalable as no directory is required but this
scheme is slow as processor has to wait until lock is
released and for all the writes to be transmitted and
acknowledged.

IV. Software Based Protocol

A. MSI Protocol

This is basic protocol for write-back cache. It has
three states, used for write-back cache to determine
the valid data block which is not modified (dirty
blocks). These states are:

 Modified: This is also known as
dirty state. This cache has the only valid
copy of data blocks, even main memory has
incoherent copy of that shared data block.

 Shared: This means it is consistent
copy of data.

 Invalid: This means that it is
inconsistent copy of shared data block. In
this protocol before write operation, all other
copies of data shared data block must be
invalidated.

B. MESI Protocol

It is also known as Illinois protocol, due to its
development in university of Illinois at Urbana-
Chanpaign [19]. This protocol is very renowned,
supports write-back cache. It is better than MSI
protocol as for every write operation there are two
transitions, even when that data block is not shared
then too. In the first transition it gets the memory
block in shared state and in second transition causes
write it also changes the state of that data block to
shared state from modified state. It adds a new state
to MSI protocol i.e. Exclusive state which reduces
the traffic because of write operation of shared data
block.

C. MOSI Protocol

MOSI is also an extension of basic MSI protocol.
One new state has been added to it i.e. Owned state.
When the cache line is in owned state has the most
recent and correct copy of data. This new state: (i) is
like shared state of data. (ii) it is also like modified
state as main memory can have the stale copy of the
data. At a time only one cache can be in owned state
and all other cache hold the data in shared state. After
writing, it changes to shared state by modifying the
main memory.

D. MOESI Protocol

MOESI protocol encompasses all of the possible
states used in other protocols. It has five states. The
Owned state represents the data which is modified
and shared. This avoids the need to write modified
data back to main memory before sharing it.

E. Dragon Protocol

Dragon protocol was first time proposed by
researchers at Xerox PARC for their dragon
multiprocessor system [19]. It consists of four states:

 Exclusive Clean (Exclusive): It’s
like exclusive state of cache. In this case
maim memory is up to date.

 Shared Clean: More than one cache
can have this data block but it may or may
not be consistent with main memory.

 Shared Modified: More than one
cache can hold this data block, but main
memory does not have the recent copy of
that data The responsibility of updating this
data block has been delegated to cache. At a
time only one cache is in this state.

 Modified: It is like modified state
of MSI protocol, which can modify shared
data block and at this time main memory has
stale copy of that data block which is
updated by cache.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

151

It does not have any explicit invalid state like
MOSI, since it is an update-based protocol. It keeps
the cache up-to-date, therefore we can use the data
present in this cache at any time if the tag match is
successful.

V. CSC(Coherent with Shared Cache) Protocol

This is the most recent cache coherence protocol,
introduced in 2010 [20]. In this processor has three
cache memories: 1.Current processor’s private cache
(local cache), 2.Remote processor’s private cache
(remote cache), 3. SC-cache. The SC-cache (Shared
Coherence cache) is a small capacity cache, placed
between private cache and the bus. This protocol is a
combination of write-through and write-back
mechanisms. This includes four states: 1.PI (Private
Invalidate) 2. PD(Private Dirty) 3. PE (Private
Exclusive) 4. SS (Share Shared).

The first three states are for local and remote
cache but the fourth state exists in SC-cache only. In
CSC protocol processor first access the local cache, if
miss occurs then it searches at remote cache and if
again miss occurs then local cache controller
broadcast this request in the bus. The simulation
results showed that as compared to Dragon protocol
and MESI protocol, CSC protocol has reduced the
number of times the write back to main memory and
number of times the read operation and also total
execution time is also reduced by nearly 10% [20]. It
is better to employ CSC protocol with SC-cache then
traditional protocol.

VI. MECSIF Protocol

MECSIF is recently developed hybrid cache
coherence protocol which takes advantage of both
directory based and snoopy protocol. This protocol
introduced a small volume directory—DCache,
which has overcome the problem of the shortcoming
of undifferentiated broadcasting in snoopy protocol.
[21]. It has seven states given as following: 1. E:
Exclusive, 2. PC: Primary Clean, 3. SC: Slave Clean,
4. M: Modified, 5. S: Shared, 6. F: Forwarding, 7. I:
Invalid. Simulation results show that the MECSIF
protocol extent improves the efficiency of processor
data access comparing with MESI protocol [21].

VII. Related Work

We have used SMP Cache simulator, by varying
some parameters and keeping certain parameters fix
we have drawn various results. As shown in table1.
The Dragon Protocol is giving the best result in terms
of increased number of hits and by reducing number
of misses at great extent. The best results are shown
in table 1. On whole we can conclude that if we want
the best performance than SMP Cache simulator says

that the selection of dragon protocol will be the best
decision.

TABLE I. COMAPRISON ANALYSIS.

Sr.

No.

 Cache Miss Ratio

Set Associative MSI MESI DRAGON

1 2- Way 0.8794 0.1418 0.0095

2 4-Way 0.1387 0.1337 0.0313

VIII. Conclusion

This survey tries to give a comprehensive
overview of hardware and software-based solution to
cache coherence problem in shared memory
processor. Both approaches perform well but their
selection depends on the type of access pattern of
shared data block and also number of processors we
want to connect. Cache coherence significantly
impacts the performance of the processor. The
performance includes latency, bandwidth and
protocol overhead.

Despite of considerable advancement in this
discipline it’s still very active research area. There
exist many research topics like verification of
protocol correctness, performance evaluation,
comparison, size of the directory, minimization of
protocol overhead. And more, which are needed to
digged in the future.

IX. References

[1] Alan E. Charlesworth. The Sun Fireplane System
Interconnect. IEEE Micro, 22(1):36{45, January 2002.

[2] P. Stenstorm, ―A survey of cache coherence Schemes for
Multiprocessors‖, IEEE Computer, Vol. 23, No. 6, June
1990, pp. 12-24

[3] Ramon Lawrence ―A Survey of Cache Coherence
Mechanisms in Shared Memory Multiprocessors‖ University
of Manitoba, May 1998

[4] Jeffrey G. Gee and Alan Jay Smith. Absolute and
comparative performance of cache consistency algorithms.
Technical Report CSD-93-753, University of California,
Berkeley, 1993

[5] M. Tomasevic and V. Milutinovic, ― Hardware Solutions for
Cache Coherence ins Shared-Memory Multiprocessors
Systems‖, The Cache Coherence Problem in Shared-Memory
Multiprocessors: Hardware Solutions, M. Tomasevic and V.
Milutinovic, Ed., IEEE Computer Society Press, Los
Alamitos, California, 1993, pp. 57-67

[6] R.Lawrence, ‖A survey of cache coherence mechanisms in
shared memory‖, University of Manitoba May 1998

[7] M. Tomasevic and V. Milutinovic, ― A Survey of Hardware
Solutions for Maintenance of Cache Coherence in Shared
Memory Multiprocessors‖ IEEE 1993

[8] Agrawal A., Gupta A., ― Temporal, Processor, and Spatial
Locality in Multiprocessor Memory References‖, Technical
Report MIT/LCS/TM-397, June1989

[9] Tang761 Tang C., ―Cache System Design in the Tightly
Coupled Multiprocessor System,‖ Proceedings of the
National Computer Confmce, 1976, pp. 749-753.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

152

[10] Aganwal A., Simoni R., Hennessy J., Hmwitz U,―An
Evaluation of Directory Schemes for Cache Coherence,‖
Proceedings of the 16th ISCA, 1989, pp. 280-289.

[11] James Laudon and Daniel Lenoski, ―The SGI Origin: A
ccNUMA highly scalable server‖, In Proceedings of the 24th
Annual International Symposim on Computer Architecture,
pages 241-251,1997

[12] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John L. Hennessy, ―The Directory-Based
Cache Coherence Protocol for the DASH Multiprocessor‖, In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 148{159, Seattle, Washington,
June 1990.

[13] David Chaiken, John Kubiatowics, and Anant Agarwal.
LimitLESS Directories, ―A Scalable Cache Coherence
Scheme. In Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and
Operating System‖, volume 26, pages 224{234, Santa Clara,
California, April 1991.

[14] Mark Heinrich, Vijayaraghavan Soundararajan, John L.
Hennessy, and Anoop Gupta, ―A Quantitative Analysis of the
Performance and Scalability of Distributed Shared Memory‖,
IEEE Transactions on Computers, 48(2):205{217, February
1999.

[15] Richard Simoni and Mark Horowitz, ―Dynamic Pointer
Allocation for Scalable Cache Coherence Directories‖, In
Proceedings of the International Symposium on Shared
Memory Multiprocessing, pages 72{81, Tokyo, Japan, April
1991.

[16] Fredrik Dahlgren, ―Boosting the performance of hybrid
snooping cache protocols‖, In Proceedings of the 22th
Annual International Symposim on Computer Architecture,
pages 60–69, 1995

[17] Jack E. Ve e n stra and Robert J. Fowler, ―The prospects for
on-line hybrid coherency protocols on bus-based
multiprocessors‖, Technical Report TR490, University of
Rochester, Computer Science Department, March 1994.

[18] W. Hu, W. Shi, and Z. Tang. A lock-based cache control
protocol for scope consistency. Journal of Computer Science
and Technology, 13(2), March 1998.

[19] Silvia Lametti, ―Cache Coherence Techniques‖, A Technical
Report, December 2010

[20] J. Li, W. Liu, P. Jiao, ―A new kind of cache coherence
protocol with SC-cache for multiprocessor‖, IEEE 2010

[21]] J. Li, P. Yang, N. Ding ,H. Guan, J. Zhang, C. Men,―A New
Kind of Hybrid Cache Coherence Protocol for
Multiprocessors with D-Cache‖, IEEE 2011

