
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

117

Categorized Cache Prefetching Policy in

Mobile Environment

Prof. Sonali I. Ajankar,

Dept of Computer Tech (MCA),

 VJTI,

Mumbai, India

ajankar_9@yahoo.co.in

Dr. S. S. Sane
Dept of Computer Tech (MCA),

 VJTI,

Mumbai, India

sssane@vjti.org.in

Abstract - In mobile environment cache management is a

challenging task; it attracts the interest of many researchers to

work on this field. Caching and prefetching techniques improves

the performances of the use of cache for mobile devices. One of

the important problem is the efficient access to data. A proposed

solution to this problem is the prefetching technique because of

which user is able to access the data with low access latency and

in case of disconnection or limited connectivity also.

This paper deals with the study of cache prefetching policy

and it's simulation and analysis. In order to do this, here present

a client and server algorithm for prefetching scheme in mobile

environment. It includes prefetching techniques based on user

interest and a cache invalidation scheme which is used for freeing

space from non-validate data. It reduces the latency for accessing

data by the user and also reduces the number of data item in the

client cache. As percentage of cache updation is reduced,

performance of the device improved. We are demonstrating the

feasibility of the proposed approach with experiments using

simulation.

Keywords – Invalidation; Replacement; Prefetching

I. INTRODUCTION

The rapidly expanding demand for digital mobile

communication services, in conjunction with the recent

proliferation of portable computers, has led to the

development efforts for future mobile systems directed

towards Mobile Computing - a new dimension and

requirements for future communication and computing

networks. The mobile applications are aware of the user

context (time, location, weather, temperature, surrounding

noise etc). There are many popular context-aware tourist guide

applications at present [1].

Whereas some dealing with locations. Mobile systems still

suffer from scarce bandwidth, low quality communication and

frequent network disconnections. All these factors lead to high

delays before satisfying user's queries. But this delay will not

occur if the answer is already in the client's cache. However,

in location-dependent systems, where the answer of the same

query changes if only the user's position is different, and

where users rarely return to the same place. But, if useful

information is transferred to the client before the user requests

it, the problem of latency will be resolved.

Here presents a prefetching technique generally adapted

for location-dependent systems for managing an important

amount of data. We use the user’s location both as a prediction

criterion and as a cache invalidation one.

Here data changes with user location, direction, available

networks and data access history. The user interest is used for

data prefetching, selection of most suitable area and optimal

utilization of the device’s storage capacity and bandwidth put

forth a good prefetching technique.

II. RELATED WORK

There are three important issues involved in client cache

management:

1. A cache prefetching policy automatically preloads

data items in to the cache for possible future access

requests,

2. A cache replacement policy determines which data

item(s) should be deleted from the cache when the

free space is insufficient for accommodating an item

to be cached, and

3. A cache invalidation scheme maintains data

consistency between the client cache and the server.

Some of the papers describing these methods are as

follows:

A new cache replacement policy called Predicted Region

Based Replacement Policy (PRRP) for location dependent

data in mobile environment propose in an “A New Cache

Replacement Policy for Location Dependent Data in Mobile

Environment” by Ajey Kumar, Manoj Misra and A. K. Sarje

(2006)[2]. Unlike earlier cache replacement policies that

consider only directional/non-directional data distance, PRRP

takes into account data distance integrated with predicted

region of client's movement that adapts to client's movement

nature. It also considers the size of data item in cache. The

problem of latency is very important for local queries whereas

mailto:ajankar_9@yahoo.co.in
mailto:sssane@vjti.org.in

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

118

for non-local queries user movement for a short time does not

invalidate the answer.

The system architecture and detailed algorithms describing

the tasks executed in the client and the server as suggested in

“Prototyping a Prefetching Scheme for Location-Dependent

Systems” by Karim Zerioh and Robert Laurini(2006)[6]. They

also discuss some additional steps that can be useful for saving

energy consumption in the mobile device.

The prediction of the possible and the most relevant way

how users will request information is takes into account in

“Data Prefetching Algorithm in Mobile Environments” by El

Garouani Said, El Beqqali Omar and Laurini Robert(2009)

[5],. This approach is considered to deal with these problems

and to improve response time and reduce the amount of data to

mobile devices users.

Hoarding policy particularly adapted for location-

dependent information is propose in “Spatial Hoarding: A

hoarding strategy for location-dependent” by K. Zerioh, O. El

Beqqali, and R. Laurini (2004) [4]. A system manages a huge

amount of multimedia information and where no assumptions

can be made about the future user’s location. They use the

user’s position as a criterion for both hoarding and cache

invalidation. This hoarding mechanism improves the cache hit

ratio, thus reduces the uplink requests, and reduces the query

latency.

Using additional updated invalidation reports (UIR) to

improve query delay is suggests in, “A Scalable Low-Latency

Cache Invalidation Strategy for Mobile Environments,” by G.

Cao (2003) [3]. In IR + UIR the server broadcasts a number of

UIRs between successive IR. Each UIR only contains

information about the most recently updated data since the last

IR.

III. A CATEGORIZED CACHE PREFETCHING

POLICY:

In this research, the focus is on developing more efficient

caching and prefetching techniques in mobile environment. In

particular, these mechanisms have been investigated in

connection with management of cache in many embedded

devices, and even more general ad hoc networks.

We formulate the requirements of a good prefetching

technique for location-dependent systems and mobile

environments as follows:

 User interested Information related to the user’s current

area must be prefetched first,

 Prefetch only information related to user interest from

its neighborhoods area for not wasting bandwidth and

the mobile device resources,

 Closely related data must be grouped together and from

a different category (and this categorized data sent

together to the client, because once the user accesses a

data item he will need to access also the data closely

related to it),

 User direction and speed is also taken into consider (if

user moving on fast vehicle then only high access

probability data will be prefetched).

 A cache invalidation scheme used for freeing space

from non-validate data where there is need for more

relevant data,

Here divide geographical area dynamically into squares of

unit length and makes the prefetching decision after user will

travel ¾ of length of square by considering the user’s direction

and restricts the prefetched geographical area. This scheme the

cache invalidation criterion is executed when there is need to

store prefetch data. Here an access probability table also

maintain where each data item is associated with the average

probability that it will be requested. Accordingly it divides

into the hot data and cold data (first 40% data consider as hot

data and remaining as a cold data). Only a hot data items are

prefetch for the purpose of not wasting bandwidth and the

user’s device resources when user’s moving speed is fast. The

prefetching decision is made far before the user is outside the

prefetched region. In this policy, we assume that we have no

knowledge about future user’s movement. Even the user

moves randomly, this prefetching policy can perfectly adapt

itself to its movement.

IV. ARCHITECTURE FOR PROPOSED SYSTEM

The central server issued to model a service site for

centralized data. In addition to a central information database,

prefetching manager is responsible for proactively sending

prefetch data items toward the clients in response to the

notification of prefetching request. Since the downlink

bandwidth is usually much larger and cheaper than uplink

connection, pushing techniques result into efficient and

valuable tools.

The local server is the data manager and wireless

information server for a single cell. Each cell is assumed to

have a unique local server which provides wireless access for

all the clients in its cell and acts as a bridge between the

central server and the client devices at the same time. This is

an important factor since neighboring local servers must work

closely together to provide efficient location-based services.

The local data managers responsible for maintaining the

information received from the central server as well as other

local servers. Fig. 1 depicted general system architectural

design consisting of the central server, local server, and the

client device.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

119

Figure 1. Architecture for Proposed System.

The mobile client is any end user device that is capable of

wireless communication as well as user interface services. A

client can change its position at will, in and out of a cell, from

one cell to another, without notifying any server in advance.

Since a client can issue a query at any time anywhere, this is

especially challenging for information service providers. In

our architectural design, a client always sends requests to the

local server of the cell where the client resides. The local data

manager checks whether the data is present at the local server

or not if present then the local server can answer the query

without consulting other servers. If the target information

resides in other cells or in a central server, the local server

must request the desired information from other servers and

pass them to the client. Since the client can move at will, a

target that can be accessed from within the same cell may have

to be accessed from other cell for the next request. Static

query processing strategies have little use in such

environments. Dynamic data management strategies that can

effectively locate the desired data as well as quickly respond

to the location changes are in order.

V. ALGORITHMS

The algorithm given below describes the steps executed by

the server.

A. Algorithm in the Server Side

01: if (prefetching_request) then

02: stop previous prefetching thread;

03: select_region ();

04: prefetching ();

05: else then //Message is a question

06: search_prefetch data list;

// which is the list of Id’s of sending data

07: if (found) then

08: exit;

09: else then //Search in local database

10: if (found) then

11: send response to the client;

12: else then

13: send request towards central server;

14: central server send requested data towards local

server which further sends towards client;

15: end if

16: end if

17: end if

If prefetching request is received at local server, the local

server stops the previous prefetching thread for sending the

new requested data immediately to the client. Otherwise if a

query request is received, then before answering a query, the

list is checked. A list of already prefetched information (Id’s

of sending data) is maintained by the Prefetching Manager. If

data found in this list then server does nothing otherwise it

first searches in local database and then in central database.

The cache invalidation algorithm is also executed with

prefetching request for freeing space of the cache. Then, data

invalidated by the cache invalidation criterion are discarded

from the list of prefetched elements. Since the client is

responsible for its cache invalidation policy there is no need to

execute the cache invalidation criterion in the server. Another

important advantage of this list is not to resend already

prefetched information, related to squares not totally

prefetched due to a new prefetching request, which occurred

while the previous prefetching process was still active. In the

case where the user request for new prefetching data and the

server is still prefetching data, a new set is arranged based on

the list of prefetched elements, the already sent elements are

discarded from the set of elements to prefetch. At this stage

the server can begin sending prefetched data.

B. Algorithm in the Client Side

The algorithm given below describes the steps executed by

the client

01: if (message received from server) then

02: if (prefetch data) then

03: if (it answer one of the pending query) then

04: display and cache data;

05: else then

06: cache data;

07: end if

08: else then //response to previous query

09: display and cache data;

10: end if

11: else if (query occurs) then

12: search in local cache;

13: if (found) then

14: display requested data;

15: else then

16: send request towards local server;

17: end if

18: else if (traveled distance reach threshold)

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

120

 // request for prefetching relevant data

19: notification sends towards local server

 // call for select_region() and prefetching();

20: invalidation ();

21: end if

The client informs the local server of its profile. When

message is received from server, then client checks whether it

is a prefetching data or response to one of its previous pending

query. If it is an answer to one of the pending query then

display information and cached the data.

The invalidation criteria of the cache were carried out to

drop the data of the old regions. The user location and the

direction of the device are the most important criteria for the

cache invalidation.

For answering queries, the client looks for the answer in the

cache before sending it to the local server. When a message is

received from the server, it is first determined if either the

message is a response or a previously sent query or a

prefetched data from the server. In the later case, the client

checks if the data can answer one of its pending queries before

caching this data. In this way, the client will not have to wait

longer time for the answer from the server if this prefetched

element answers a pending query. At the same time the server

will not have to re-send a previously sent element as noted

before.

The client device traces the travelled distance since the last

prefetching request, when it reaches to the threshold it sends

the notification for requesting prefetching data to the local

server and then invalidation criteria of the cache were carried

out.

V. SIMULATIONS AND ANALYSIS

At first, the development of an approach consists of storing

information in database. We simulated this model by

implementing it in java, to compare the performance of our

approach with previous prefetching algorithms. In this

prototype, we are showing a simulation that allows potential

clients (e. g. tourist) to receive the data they need in the future

movement, by the server according to their positions, device

storage space, speed and direction. In this prototype, the

potential clients are equipped with GPS enabled mobile

devices with network connectivity. The shared data is stored

on the server in the form of tables in database with its location

(latitude and longitude).

In this system geographical area is dynamically divided

into the small squares of equal length considering user

location as a center of the side of a square. After traveling ¾
th

of the length of the side of square (consider as threshold) the

device will send prefetching request and division of

geographical area will be calculated again and it will fetch the

data of its current square and three next square in the direction

of user. Fig. 2 is showing the area considered for prefetching

data. If user is in 0
th

 area then data for the area having number

1, 2 and 3 are also fetched.

Figure 2. Data in the cache of the client following his direction.

With prefetching request, the user informs the server of its

profile. The server sends relevant data to the client of the

squares where he could be in its next displacement.

These simulations are performed for testing the efficiency of

running location based application.

At the start of application user must have given his/her own

information (like user interest) by completing the user profile

form. User can ask about any information they want but the

criteria used for prefetching is different for different user,

based on their profile.

VI. RESULT of COMPARISON

The proposed method compared to the other two methods

Directed Prefetching (DP) and Spatial Prefetching (SP); gives

competitive results for the rate of success, compared to

volume of data stored in user cache. It decreases the mass of

data in cache. The difference between the three techniques is

in the evolution of the number of items pre-fetched into the

cache of mobile device of a client. So the uplink and downlink

bandwidths are saved for fetching fewer amounts of data.

Fig. 3 shows the comparison between Directed

Prefetching, Spatial Prefetching and our Categorized

Prefetching. Results show that the Categorized Prefetching

client cache contains less number of data items than Directed

Prefetching and Spatial Prefetching. Also the cache update

time is less in Categorized Prefetching.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

121

Figure 3. The number of items in the cache of client over its location.

Fig. 4 shows that Categorized Prefetching has less cache

update time for user movement compare to the Directed

Prefetching. From the above results and comparisons we also

conclude that with the increase in performance of the device

the battery life is also increases.

Figure 4. The cache Update Over the location of user

VII. CONCLUSION

For reducing the data in the cache and not wasting

bandwidth and the mobile device resources, only user

interested data must be prefetch and area selected for

prefetching must be calculated dynamically. A cache

invalidation scheme must be used for freeing space by

removing non-relevant data and prefetching more bandwidth

are saved for fetching fewer amounts of data. As the user

interested data already in the user cache reduces the latency

for accessing data.

REFERENCES

[1] “A Generic Framework for Developing Map-Based Mobile Application”

by Haslinda Harun, Norleyza Jailani, Marini Abu Bakar, Mohamad Shanudin
Zakaria, Salha Abdullah at International Conference on Electrical Engineering

and Informatics 5-7 August 2009, Selangor, Malaysia.

[2] “A New Cache Replacement Policy for Location Dependent Data in
Mobile Environment” by Ajey Kumar, Manoj Misra and A. K. Sarje 2006.

[3] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for Mobile
Environments,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 5, Sep

03.

[4] K. Zerioh, O. El Beqqali, and R. Laurini, “Spatial Hoarding: A hoarding
strategy for location-dependent Proceedings of the IEEE International

Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing

(SUTC’06) systems”, proceedings of the 11th international symposium on

spatial data handling, Leicester, UK, 2004, pp. 217-230.

[5] “Data Prefetching Algorithm in Mobile Environments” by El Garouani
Said, El Beqqali Omar and Laurini Robert publish in European Journal of

Scientific Research Vol.28 No.3 having ISSN 1450-216X (2009), pp.478-491.

[6] “Prototyping a Prefetching Scheme for Location-Dependent Systems” by
Karim Zerioh and Robert Laurini publish in proceedings of the IEEE

International Conference on Sensor Networks, Ubiquitous, and Trustworthy

Computing (2006).

[7] Kristian Kvilekval and Ambuj Singh, “SPREE: Object Prefetching for

Mobile computers” (2004) Distributed Objects and Applications (DOA).

[8] U. Kubach, and K. Rothermel, “Exploiting location information for

infostation-based hoarding”, Proceedings of the 7th international conference
on mobile computing and networking, 2001, pp. 15-27.

[9] V.P. De Nitto, V. Grasi, and A. Morlupi, “Modelling and evaluation of

prefetching policies for context-aware information services”, Proceedings of
the 4th international conference on mobile computing and networking, Dallas,

USA, 1998, pp. 55-64.

