
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

109

Performance Evaluation of Cost-cognizant Test Case

Prioritization

PrakashSrivastava

Department of Computer Science & Engineering

Invertis University,

Bareilly, India

prakash2418@gmail.com
__

Abstract-Software testing is indispensable for all

software development. In software development

practice, testing accounts for as much has 50% of

total development efforts. Regression testing has

been used to support software testing activities and

assure the acquirement of appropriate quality through

several versions of a software program. Regression

testing, however, is too expensive because it requires

many test case executions, and the number of test

cases increases sharply as the software evolves.

Consequently, this leads to the evolution of Test Case

Prioritization which helps in minimising the

Regression test suite reduction so that the

effectiveness of Regression testing enhances. Cost-

cognizant test case prioritization incorporates test

costs and fault severities into test case prioritization

as important factors. As a result of the proposed

approach, software testers who perform regression

testing are able to prioritize their test cases so that

their effectiveness can be improved.

Key words-APFD, regression, severity

I. INTRODUCTION

 Software testing is the process of validation

and verification of the software product. According

to Myers “Software Testing is the process of

executing a program with the intent of finding

errors”. Effective software testing will contribute to

the delivery of reliable and quality oriented software

product, more satisfied users, lower maintenance

cost, and more accurate and reliable result. However,

ineffective testing will lead to the opposite results;

low quality products, unhappy users, increased

maintenance costs, unreliable and inaccurate results.

Hence, software testing is a necessary and important

activity of software development process.

The importance of testing can be understood

by the fact that “around 35% of the elapsed time and

over 50% of the total cost are expending in testing

programs”. Software is expected to work, meeting

customer’s changing demands, first time and every

time, consistently and predictably. Earlier software

systems were used for back-office and non-critical

operations of organizations.

A software product, once developed, has a

long life and evolves through numerous additions and

modifications based on its faults, changes of user

requirements, changes of environments, and so forth.

With the evolution of a software product, assuring its

quality is becoming more difficult because of

numerous release versions. It is becoming much

harder to manage the software itself. On the other

hand, users hope that a new software version has

better quality than before. However, sometimes the

quality of software becomes worse than before

because the added or modified features create

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

110

additional faults into the existing product as well as

the newly modified version.

Regression Testing is a maintenance activity

that attempts to validate modified softwareandensure

that modifications are correct and have not

inadvertently affected the software.Thepurpose of

regression testing is to ensure that changes made to

software, such as adding new features or modifying

existing features, have not adversely affected the

existing features of the software. Regression testing

is usually performed by running some, or all, of the

test cases created to test modifications in previous

versions of the software.

A. Techniques of Regression

Testing

The various techniques of regression testing are as

follows:

A.1 Retest All

The simplest regression testing strategy is to

rerun all existing test cases. This strategy is easy to

implement, but can be unnecessarily expensive,

especially when changes affect only a small part of

the system. This retest-all approach may consume

excessive time and resources. It does not require any

test selection process, the retest-all approach over

time becomes less and less affordable for complex

systems.

A.2 Regression Test Selection (RTS)

Regression test selection techniques select a

subset of the existing test suite for execution,

depending on factors such as the changes made to the

code and the execution behaviour of tests.With this

approach only a subset of the test cases contained in a

test suite are selected and rerun. Reducing the

number of test cases rerun reduces regression testing

costs, but may also cause fault-revealing test cases to

be omitted. Since, in general, optimal test selection is

impossible, the cost-benefit tradeoffs of RTS

techniques are a central concern of regression testing

research and practice. Regression test selection

techniques can have substantial costs, and can discard

test cases that could reveal faults, possibly reducing

fault detection effectiveness.

A.3 Test Suite Reduction

Test suite reduction techniques permanently

reduce the test suite by identifying and discarding

redundant tests. Test suite reduction techniques

address this problem by using information about P

and T to permanently remove redundant test cases

from T, so that subsequent reuse of T can be more

efficient. Reduction thus differs from selection in that

the latter does not permanently remove test cases

from T, but simply “screens” those test cases for use

on a specific version P of P, retaining unused test

cases for use later.

A.4 Test Case Prioritization

To reduce the cost of regression testing,

software testers may prioritize their test cases so that

those which are more important, by some measure,

are run earlier in the regression testing process. One

potential goal of test case prioritization techniques is

to increase a test suite’s rate of fault detection (how

quickly, in a run of its test cases, that test suite can

detect faults). Test case prioritization provides a way

to run test cases with the highest priority earliest

according to some criterion earliest, and can yield

meaningful benefits, such as providing earlier

feedback to testers and earlier detection of faults.

Test case prioritization can significantly improve the

rate of fault detection.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

111

B.Cost-cognizant test

casePrioritization

The goal of this paper is to present a survey

of the main regression-testing techniques proposed to

date, so as to better understand the state of the

research and the state of the practice in regression

testing, along with a discussion of the current trends

in both academia and industry.

Since test case prioritization was introduced,

there has been an important weakness in the

technique; there has been no consideration of test

costs and fault severities. For this reason, test case

prioritization techniques often produce no appropriate

test orders in practice [3]. Cost-cognizant test case

prioritization incorporates test costs and fault

severities into test case prioritization [1, 3]. In short,

cost-cognizant test case prioritization considers the

test cost and fault severity of each test case as

important factors, and the test cost and fault severity

are used for prioritizing test cases on the existing test

case prioritization algorithms.

The purpose of this prioritization is to

increase the likelihood that if the test cases are used

for regression testing in the given order, they will

more closely meet some objective than they would if

they were executed in some other order. However,

this cost-cognizant test case prioritization technique

reveals a problem; the specific way to estimate cost

and fault severity is not clarified even though such

estimations are needed.

B.1 Historical Value-Based Approach

This approach is based on the use of

historical information, toestimate the current cost and

fault severity for cost cognizant test case

prioritization to determine the priority of given test

cases. By using the historical information of the costs

of the test cases and the fault severities of detected

defects in a test suite, the historical value of the test

cases is calculated and used for the basis of test case

prioritization. Additionally, the historical value can

be combined with not only a cost-cognizant test case

prioritization technique, but also several existing test

case prioritization techniques such as a coverage-

based test case prioritization technique. Namely, the

historical value is calculated from the previous test

costs and fault severities of detected defects in a test

suite. Then, the historical value is used for the factor

that affects the prioritization of test cases in a given

test suite. Effectiveness of this approach can be

quantified in terms of Average Percentage of Faults

Detected (APFD) in a particular test suite.

B.1.1 Approach and Overview

 To conduct regression testing for P, a test

suite is composed of the test cases from the

test case repository.

 The cost of a test case and fault severity of

the detected defects, which are the results

from the execution of a test case, are stored

in the historical information repository.

 When the prioritization is required, the

historical value model uses the stored

historical information, the test costs of the

test cases and the fault severities of the

detected defects, and calculates the historical

value.

 The calculated historical value is used for

the criterion of prioritizing test cases in a

test suite. The figure 2.1 shows the overall

description of the Historical value based

approach for test case prioritization.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

112

Figure 1: Overview of Historical value based

approach

B.1.2 Test Cost and Fault Severity

Test costs are greatly diversified in software

testing. Depending on the criteria, a test cost can be

refined through several factors such as machine time,

human time, test case execution time, monetary value

of the test execution, and so forth [1]. Similarly, fault

severity can also be refined by depending upon such

criteria as test criticality (the criticality of the test

case that detects a fault) and function criticality (the

criticality of the function in the code that is covered

by the test case).In our approach, test cost is refined

as the test case execution time of a test case[1,3].

Fault severity is refined to test case criticality, which

is designated to each test case by software testers.

C. Experiment Environment

The experiment environment will consist of:

 JUnit testing framework to provide for

assessing test case prioritization

techniques using hand-seeded faults,

test case execution is also performed on

the JUnitenvironment [15].JUnit is a

simple, open source framework to write

and run repeatable tests. Approximately

thousands of test cases are contained in

a Test suite of Junit under various

Directories like Experimental,

Manipulation, Assertion, Description

etc. These test cases are executed in a

Junit testing environment to exhibit

following information:Success and

failure of Test cases, Test case

execution time, which is also

considered as the Cost Severity. For the

target of the testing objects, whose

faults are seeded by hand, and tools

came from Software-artifact

Infrastructure Repository[16].

 For the execution of the experiment

Microsoft Dot Net framework is used in

which crystal reportisusedfor the

display of graphs and results.Microsoft

visual studio is a software tool for

automating software build processes. It

Test Cost

Fault Severity

Historical value

model

Test Suite T for P

Test Suite T for P

Test case

Repository

Historical

Information

Repository

Test Case

Prioritization

T1

14

11

11

11

11

11

T2

00

11

41

11

11

11

11

1

T4 T3

T1

14

11

11

11

11

11

T2

00

11

41

11

11

11

11

1

T3 T4

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

113

is similar to netbeans but is implemented using the VB.Net

The figure 2 describes the overall structure of the experimental environment.

Microsoft Visual Studio

Framework

Historical Value

Calculation

Prioritization

Techniques

Historical value

Based Approach

Figure 2: Overview of the experiment environment

language, requires the windows operating system

platform and is best suited to build projects.

D.Results and Discussion

D.1 Implementation Parameters

The salient parameters through which we

analyze the performance of Cost Cognizant Test

Case Prioritization:

 Execution Time

 Cost Severity

 Fault Severity

 Average Percentage of Faults

Detected(APFD)

The performance of Cost Cognizant Test Case

Prioritization is analyzed through Junit testing

framework for execution time & cost severity. The

fault severity is analyzed on the basis of Software

APFD

Calculation

Source

Code

Test Cases

APFD

Coverage

Information

Historical

Information

Repository

Prioritized

Test Cases

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

114

artifact Infrastructure repository whose faults are

integrated through our experiment environment.

APFD performance is analyzed through crystal

reports and graphs. Given below is a instance of

faults detected in a particular test suite.

 TABLE I: Fault Matrix

Figure 3: APFD for non prioritized test suite

Non Prioritized test sequence in the order of

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 3 illustrates that following the Non Prioritized

order of test sequence percentage of faults are

exposed in a large execution time of test cases. The

number of Test cases are also more to be executed to

identify faults.

Figure 4 illustrates that following the

Prioritized order of test sequence percentage of faults

are exposed in a less execution time of test cases.

The number of test cases is less as compared to

non prioritized order of test cases. It shows that

Historical approach is efficient to find more

number of faults detected in lesser number of test

case execution comprising of various test cases in a

particular test suite. Hence the result shows that it

will improve the effectiveness of software tester

who will perform regression testing in less time

with less effort.

Prioritized test sequence in the order of

Figure 4: APFD for prioritized test suite

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90100

P
e
rc

e
n

ta
g

e
 o

f
F

a
u

lt
s
 d

e
te

c
te

d

Percentage of Test Suite executed

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

F1 * *

F2 * * * *

F3 * * * *

F4 *

F5 * * *

F6 *

F7 * *

F8 * *

F9 *

F10 * *

No. of

Faults

2 3 1 3 2 3 2 2 2 2

Time
in

Min

5 7 11 4 10 12 6 15 8 9

T4 T2 T1 T7 T6 T9 T10 T5 T8 T3

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90100

Percentage of Test suite executed

P
e
rc

e
n

ta
g

e
 o

f
F

a
u

lt
s
 d

e
te

c
te

d

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

115

E. Conclusion

The test cases are executed in a junit testing

environment to know about the execution time,

success and failure of test cases, type of error

identification. The historical value module is also

made to calculate historical value for the test cases.

The .NET framework is used for the target of the

experiment which is comprised of several modules.

The junit information is integrated successfully with

the help of java class path settings. The performance

of cost cognizant test case prioritization using

historical value based approach is analyzed through

crystal report graphs and fault matrix in terms of

Average Percentage of Fault detected (APFD). The

results of the experiment shows the performance of

cost cognizant test case in terms of (APFD) and

software testers who perform regression testing are

able to prioritize their test cases so that their

effectiveness can be improved in terms of their effort

& accuracy. The major contributions of this research

work are the following two points. First, it provides a

way to estimate the cost and fault severity of the

current test case by using Junit testing framework &

historical information. Second, the proposed

approach can complement other test case

prioritization techniques because it can be combined

with other test case prioritizations.

REFERENCES

[1] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel,

"Incorporating Varying Test Costs and Fault Severities into Test

Case Prioritization", Proceedings of the International Conference

on Software Engineering, vol. 3, pp. 329-338, May 2001.

[2] Institute of Electrical and Electronics Engineers (IEEE) IEEE

Standard Computer Dictionary: A Compilation of IEEE Standard

Computer Glossaries New York, NY: 1990.

[3] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel,

and Sebastian Elbaum, “Cost-cognizant Test Case Prioritization”,

Technical Report TR-UNL-CSE-2006-0004, University of

Nebraska-Lincoln, March 2006.

[4] Gregg Rothermel and Mary Jean Harrold “Empirical Studies of

a Safe Regression Test Selection Technique”, IEEE transactions on

Software Engineering, vol. 24, pp. 401-419, June 1998.

 [5] Zheng Li, Mark Harman, and Robert M. Hierons “Search

Algorithms for Regression Test Case Prioritization” IEEE

transactions on Software Engineering , vol. 33, pp. 225-237, April

2007.

 [6] AnjaneyuluPasala, L.H Yannick, Lew Yaw Fung,

FadyAkladios, AppalaRaju G, Ravi P Gorthi “Selection of

Regression Test Suite to Validate Software Applications upon

Deployment of Upgrades” 19th Australian Conference on Software

Engineering vol. 26, pp. 130-138, March 2008.

[7] T.M.S.UmmuSalima, A.Askarunisha, N.Ramaraj “Enhancing

The Efficiency of Regression Testing Through Intelligent Agents”

International Conference on Computational Intelligence and

Multimedia Applications, vol 1, pp. 103-108, Dec. 2007.

[8] Mark Sherriff, Mike Lake, and Laurie Williams “Prioritization

of Regression Tests using Singular Value Decomposition with

Empirical Change Records”, 18th IEEE International Symposium

on Software Reliability, pp. 81-90, Nov. 2007.

[9] Hao Chen, BeijiZou, NaizhengBian, Lili Pan “A Reusable

Component-Based Library for GUI Regression Testing", First

International Workshop on Knowledge Discovery and Data

Mining, pp. 326-329, Jan 2008.

[10] Mary Jean Harrold and Alessandro Orso “Retesting Software

During Development and Maintenance”, Frontiers of Software

Maintenance, pp. 99-108, September 2008.

[11] Xiao Qu, Myra B. Cohen, Katherine M. Woolf

“Combinatorial Interaction Regression Testing: A Study of Test

Case Generation and Prioritization”, IEEE International

Conference on Software Maintenance, pp. 255-264, Oct. 2007.

[12] Henry Muccini, Via Vetoio, “Using Model Differencing for

Architecture-level Regression Testing”, 33rd EUROMICRO

Conference on Software Engineering and Advanced Applications ,

pp. 59-66, Aug. 2007.

[13] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and

Mary Jean Harrold, “Prioritizing Test Cases for Regression

Testing”, IEEE Transactions on Software Engineering, vol. 27, pp.

929-948, October 2001.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

116

[14] Hyuncheol Park, HoyeonRyu, JongmoonBaik “Historical

Value-Based Approach for Cost-cognizant Test Case Prioritization

to Improve the Effectiveness of Regression Testing”, Second

International Conference on Secure System Integration and

Reliability Improvement pp. 39-46, July 2008.

[15] JUnit Testing Framework http://www.junit.org

[16] Software-artifact Infrastructure Repository, http://sir.unl.edu

[17] Alex Keener, Sofya – dynamic program analysis for Java

software, http://sofya.unl.edu

