
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

93

Linked list traversal time with Matrix

Implementation

Sanjay Razdan
Computer Science Corporation

Noida, INDIA

sanjayrazdan@hotmail.com

Abstract: This paper proposes the matrix structure of the

linked lists to reduce the time required to access any given node .

In order to access the Nth node in a linked list we need to

traverse all (N-1) nodes. In our matrix structure we do not need

to traverse all (N-1) nodes, hence time is reduced.

Keywords: Linked list, Matrix, O(N), Pointer.

I INTRODUCTION

Linked list is a series of data structures which are not

adjacent to each other. This data structure has two parts, first

part contains the actual data and second part contains the

address that points to the next data structure or the data

structure that follows it . So the second part of the data

structure is actually a pointer to the next data structure. We

call this pointer as the “Next” Pointer. This means that we can

traverse the linked list with the help of this “Next” pointer.

We just need to point this “Next” pointer at the data

structure that we want to access.

Linked list implementation is shown in Figure 1.

Linked list data structure can be defined with a series of

C++ statements.

 Struct node

 {

 item int

 Next * ptrtype

 }

In the above statements we define a structure “node”. It

contains the variable “item” which holds the actual data and

“Next” which contains the address of next data structure.

This is called as “Next” pointer.

In order to access the 1
st
 node of the list , we also have a

pointer called “Head” that points to the 1
st
 data structure or

1
st
 node.

It is also important to note that the “Next” pointer of the last

node points to NULL which indicates the end of linked

list.

node * p (a)

statement (a) defines the variable p that can point to the

variable of type “node”.

p->data is the portion of the structure where actual data is

placed and p->next is where the address which points to

the next data structure is located.

 Figure 1. Implementation of linked list.

II LINKED LIST TRAVERSAL

Due to the non adjacent nature of the data structures or nodes,

it becomes impossible to access the nodes directly. If we want

to access 10
th

 node, we will have to visit all the 9 nodes

preceding it . In general if we want to go to Nth node , we will

have to visit all (N-1) nodes before it. Thus in the worst case

when we want to access last node , we have time

complexity of O(N).

To traverse a linked list ,we start with the first node and

using the “Next” pointer we visit all the nodes sequentially.

 For I = 1 to N

 {

 p=p->Next;

 }

The above statements show how we can traverse nodes by

using the “Next” pointer.

III PROPOSED LINKED LIST STRUCTURE

With the Matrix like structure of the linked lists, we have

two cases. (A) Linked lists with even number of nodes (B)

Linked list with odd number of nodes

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

94

(A) Linked list with even number of nodes.

With even number of nodes in a linked list, we arrange the

nodes in the matrix structure as shown in Figure 2.

We place N/2 nodes in the 1st row and numder them with

odd numbers using some “counter” variable. The remaining

N/2 nodes are placed in second row and marked with even

numbers. Each node will have three pointers “Next”,

“Down” and “Diag” as shown in Figure 2. Now if we want

to visit the odd numbered node , we will traverse the upper

row of the list and in case we have to visit the even

numbered node , we will visit the lower row.

. This means we are actually dividing the list into two parts

and at any point of time we will have to visit only N/2 nodes

to reach Nth node.

(1))Algorithm to access xth node

{

If the node is last node , access using p->diag

if the node is odd numbered , access using p->next.

if the node is even numbered, access using

p->down->next

}

(2)) Node Traversal

Following is the node traversal using

the above algorithm.

Node 6 : p->diag

Node 3: p->Next

Node 5: p->Next->Next

Node 2: p->down

Node 4: p->down->next

 Figure 2. Linked list with even number of nodes.

(B) Linked list with odd number of nodes

With odd number of nodes, we arrange the nodes as shown

in Figure 3. If we have N nodes (where N is any odd

number), we place (N-1)/ 2 at the 1
st
 row of the matrix and

rest of the nodes at the 2
nd

 row as shown.

 Figure 3. Linked list with odd number of node

The nodes are interconnected as shown in the Figure 3.

(1) Algorithm to access xth node

We can use the same algorithm as (A.1) to traverse this

list also.

In this case also, the best case is O(1) when we want to

access the last node or 1
st
 in the list . We will achieve worst

case O(N/2) when we want to access any other node.

In Figure 3, we can clearly see that node 4 will take the

maximum time. To reach node 4 we have to traverse two

nodes .

In general apart from node 6 and node 1 which will take

O(1) time, all other nodes can be reached in O(N/2) time

which is better than O(N) as in linear linked lists.

CONCLUSION

The matrix structure of the linked list divides the list into

two branches or rows .While traversing the list we need

identify whether the node is even or odd numbered. Based in

this we will traverse only a single branch, i.e., (N/2) nodes

in the worst case. This means we have better performance

than linear linked lists shown in Fig1, where we have the

time complexity of O(N).

REFERENCES

[1] Mark Allen Weiss, “Data Structure and Algorithm

 Analysis in C”

[2] Carrano-Helman-Veroff, “Data abstraction and Problem

Solving with C++, pp.173–193.

