
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

84

Efficient Algorithm for the Non-Equlibriums Green’s

Function Method for NumericalTransport-

Simulations in Nanostructures on CPUs and GPUs

Jan Jacob

Institute of Applied Physics

University of Hamburg

Hamburg, Germany

jjacob@physnet.uni-hamburg.de

Lothar Wenzel, Darren Schmidt, and Qing Ruan

National Instruments

Austin, TX, USA

Vivek Amin and Jairo Sinova

Department of Physics and Astronomy

Texas A&M University

College Station, TX

Abstract—We present an efficient algorithm for numerical

simulations of charge transportthrough semiconductor

nanostructures performed withinthe Green’s function formalism.

The commonly used algorithmto compute the conductance of

nanostructures in this formalismhas been adapted for parallel

execution on both multicore computersand general-purpose

graphics processing units (GPU) in a memory-efficient way to

allow simulations of devices with realistic dimensions.

Keywords— numerical simulation, semiconductor, Green’s

function, GPU, multicore, algorithm

I. INTRODUCTION

The continuing miniaturization of circuits comes
notwithout side effects; as the dimensions of such
devicesdecrease, quantum effects become increasingly relevant
to their operation.While these effects can be detrimental to
standard CMOSdevices, they also pave the way for new kinds
of devices that havethe potential for significant performance
improvements by employing the spin degree of freedom of the
electrons as an additional or alternative information carrier.
Spin-based transistors,utilizing magnetic source and drain
contacts connected to a spin-orbit coupled semiconductor
channel, provide animportant example. Such devices would
require less energyfor switching processes, since their channels
no longer haveto be depleted completely [1]. With rather small
gate voltages, one canchange the electric field across the
channel and thereby the spin-orbit coupling strength. This
changestheelectron’sspin-precession length and thereby its spin
orientation with respect to the magnetization of thedrain
electrode [2].Controllable phenomena such as this could leadto
a new paradigm in information processing, whereby the spin of
an electron becomes a relevant degree of freedom.

Although the physics of charge-based devices is quite well
understood,physicists and engineers still face challenges
regardingthe experimental realization of their spin-based
cousins.While analytical predictions regarding these

nanoscaledevicescan be made, it is challenging and often
impossible to compare such predictions with experimental
results due to the oversimplificationof the analytical model.
However, numerical simulations of the transport properties of
nano-structured semiconductor devicesprovide a very
important bridge between analytical descriptionsand
experimental results. In such simulations donor impurities,
lattice imperfections, and interactions within a sample that are
ordinarily inaccessible to most analytical computations can be
taken into account, providing researchers with far more
accurate predictions to compare with experiments.
Unfortunately, while these devices are rather small for
fabrication they are still huge for numerical simulations if one
wants to simulate these devices with both realistic dimensions
and appropriately minute grid sizes, resulting in large
computational and memory load.

One of the common approaches to simulate transport in
semiconductor nanostructures is the non-equilibrium Green’s
function (NEGF) method [3]. Other popular approaches, such
as the stabilized transfer matrix algorithm [4], can be translated
in terms of the NEGF method; it exhibits a similar
mathematical structure and thus employs similar numerical
techniques. In this work we explore optimized implementations
of the Green’s function method for application to parallel
architectures of multi-core CPUs and their scalability over
multiple threads, as well as their portability to general purpose
graphics processing units (GPU).

II. MATHEMATICAL AND PHYSICS BACKGROUND

We briefly introduce the Green’s function method to
simulatetransport in mesoscopic structures [3]. In conductors
whose dimensionsare small enough such that interface
resistances and the number of transverse modes an electron can
occupy are delimiting factors, one must use the Landauer
formula in order to calculate the samples’ conductance.
Essential to this formula is the transmission probability T,
describing the total probability of carriers to transmit through

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

85

the sample from one contact to the other. Overall the Landauer
formula is given by

whereeis the elementary charge and his Planck’s constant.It is
natural in these systems that different quantum-
mechanicalmodesexist in which carriers can propagate through,
not unlikely different channels or lanes in a highway. We
definethe matrix elements smnas the quantum-mechanical
probability amplitudes of acarrierthat begins in the m-th mode
of one contact, scatters through the sample, and leaves in the n-
th mode of the other contact.

If the conductor is much smaller than the phase-
relaxationlength, then transport is coherent and the total
transmissionprobability can be decomposed into the sum of
these amplitudessquared (i.e. with no interference). Thus one
may write

∑ (2)

where,

 | |

Thus by determining the s-matrix of the microscopic
sample,one can compute the conductance using the
Landauerformula. Green’s functions provide a convenient way
to dothis; however, the relationship between Green’s functions
and the s-matrix is beyond the scope of this work. Instead, after
demonstrating how to calculate the Green’s function for a
particular sample, we will merely state the formula for T. It is
useful, however, to keep in mind that physical meaning of the
Landauer formula.

We begin by defining a Green’s functionG (not to be
confused with the conductance G), for a systemgoverned by

some Hamiltonian ̂

 [̂]

Essentially we have rewritten the Schrödinger equation
withan added source term. From this perspective, one can
imaginethe Green’s function to simply be the wavefunction
given interms of the position vector rwherer’is a parameter
describing the locationof the source.

To calculate the Green’s function the aboveconcept is
applied to a tight-binding model by the methodof finite
differences, such that

whereiandjare indices denoting different lattice
positionscorresponding(in the continuum limit) to randr’. As a
result the aforementioneddifferential equation becomes a
matrix equation

 []

It should be made clear that, regardless of the
dimensionality of the system, each row or column in the above
matrices stands fora particular lattice site within the entire
sample. For example, a two-dimensional system containing Nx
horizontal sites and Ny vertical sites is described by matrices of
dimension(NxNy) × (NxNy).Therefore, in the case of two (or
three) dimensional systems, one must keep track of an
appropriate labeling system to denote which row or column
corresponds to which lattice site.

Since we have converted the Hamiltonian from a
differentialoperator to a matrix operator, we must introduce
discretizedderivative operators, given by

 *

+
 (

)

[]

 *

 +

 []

As an example of a Hamiltonian matrix for a one-
dimensionalsystem, with a simple kinetic and potential
term,one can consider,

(

)

where is the so-called hopping parameter and
Uidenotes the potential at each lattice site. Such a matrixcan be
rewritten for two or three-dimensional systems givenan
appropriate labeling system, as mentioned before. Written in
this way, one cancomputeG through matrix inversion.

 []

It should be noted that there exist two independent
solutions(corresponding to different boundary conditions) for
G, normally referred to as the retarded and advancedGreen’s
functions; often an imaginary parameter is addedto the energy
in Eqn. 10 in order to force the solutionto be one or the other.
For our present purposes we shallomit this imaginary factor.

As solutions like Eqn. 10 forHamiltonians such as Eqn. 9
only provide information aboutscattering within a sample, and
say nothing of the sample’s connection to external leads, which
are paramount in calculating conductance in these regime and
are always present in experiments. One normally proceeds by
assumingthat the sample is connected to the leads at various
latticesites, and that only the directly neighboring lattice sites
within thelead itself are relevant to compute the lead’s full
effect on transmission. If the leads are semi-infinite,
homogenous, and reflection-less, one can show that this is not
an approximation, but an exact statement. We shall consider
the case in which there are two leads, labeled p and q and the
sample is denoted as c. Our sample shall be represented by
aNx × Ny grid, where the x-direction runs horizontal and the y-
direction runs vertical. We assume that each lead is connected

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

86

fully to either vertical side of the sample, such that there are
Nyneighboring points in each lead. One can then rewrite the
Green’s function in block matrix form as

 (

)

All carriers enter or leave the sample via Gcp or Gcqand
propagate throughout the sample via Gc. We also include the
possibility for carriers to propagate within the leads themselves
via GporGq. One can see through inspection of the block matrix
that there is no direct connection between differing leads;
carriers must transmit through the sample to travel between p
and q. We assume the following structure for G:

 (

)

Note that each element in the above block matrix
hasdifferent dimensions, depending on the number of
latticesites corresponding to the portion they describe. We
make one more assumption, namely that a carrier present in a
lead may only enter the sample through a horizontally adjacent
site. Then one may write

 | |

We now have to solve for Gc. One can show, after some
algebra, that

 []

where

 (

) (

)

and

 []

Note that theΣp(q)are (NxNy) × (NxNy)matrices, while
gpandgqareNy × Nymatrices. Equation 14 successfully describes
the Green’s function for a sample with two leads in terms of the
hopping parameter t, the Fermi energy E, the conductor’s
Hamiltonian Hc, and the lead’s Hamiltonians Hp(q). All that is
left, using this information, is to calculate the transmission
probability. This is then calculated by

 ∑ [
]

where

 |
 |

III. BASIC IMPLEMENTATION

The straightforward implementation of this algorithm
includes the following steps (see Fig. 1): First the potential
landscape of the sample, the Hamiltonian H for the system as
well as the transverse Hamiltonian Hy describing the hopping
within one transversal slice are defined. In the second step the
eigenvalues and vectors for Hy are determined. In step three

they are then used to define the self-energies of the
leads. In the fourth step the Green’s function can be calculated
with these information. In step five the Γ matrices are created.
In step sixthe transmission probability is calculated from the
Green’s functions and the Γ matrices.

The first step contains the user input processing and does
not require significant computational resources. However, the

Fig.1 Flowchart for the basic Green's function algorithm.

The grey steps (3.) and (5.) do not need much

computational resources and do not yield high

optimization potential. The yellow steps (2.) and (6.) have

potential of optimization. However, their computational

or memory load is that small compared to the main

bottlenecks that they were not the main focus of this

work. The red tasks (1.) and (4.) yield the highest

potential for optimization by enhancing the memory

efficiency in (1.) and developing a new algorithm for (4.).

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

87

matrix of the HamiltonianH is of the size (NxNy) × (NxNy), and
therefore immediately gets extremely big for
increasingsystemsize, causing memory issues when
implemented as a dense matrix. This would limit the
applicability of the concept to systems of realistic dimensions
already before the calculation itself starts.

The Eigenvalue problem in the second step can take a
significant share of computing resources for extremely large
systems. It computes the Eigenvalues and Eigenvectors of a
Ny × Ny matrix.

The calculation of the self energies and in step three
involves only simple scalar operations executed on the
elements of the previously defined matrices.

The fourth step represents the computational bottleneck of
the NEGF method and in this basic implementation heavily
limits the system size as a (NxNy) × (NxNy) matrix has to be
inverted in Eqn. 14. This is the most resource-demanding part
of the methodandwill be addressed extensively by our
optimizations below.

Creating the matrices and in step five only involves

scalar operations on the elements of the self energies and .
As this calculation is independent of the inversion in step four,

it can be done in parallel. It is also of much lower resource
demand as the inversion step.

The final step six obtains the transmission and reflection
coefficients from the traces of several matrix products as
described by Eqn. 17. The four matrices that have to be
multiplied for each trace are of (NxNy) × (NxNy) size.

IV. OPTIMIZATIONS

A. Analysis of the basic implementation

1) Problem 1: Memory efficiency of the matrix H:
TheHamiltonianmatrix H is of the size(NxNy) × (NxNy). As

it grows fastwith system size this becomes the limiting memory
factor already for very small systems.However, the matrix
allows optimization ofthe memory performance by making use
of its sparsity:

(

)

Fig.2 Visualization of the different algorithms for the matrix inversion. A&B in the upper left corner represents the basic algorithm

with a direct matrix inversion to obtain the Green’s function as used in Version 0 and 1. C on the left corresponds to the spares matrix

PARDISO solver algorithm in Version 2. D on the upper right shows the first implementation of the block-tridiagonal solver in

Version 3. E in the lower right shows the improve block-tridiagonal solver that eliminates the need to store intermediate data. F in the

lower right finally shows the pipelined version of this code that makes the most efficient use of the available computational resources

and has been implemented as Version 5 on the CPU and the GPU system.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

88

where , , with the hopping
parameter and the potential energy at a given
site . Using the extreme sparsity of this matrix
significantly enhances the memory performance.The same is
true for the transverse Hamiltonian, that has aneven simpler
structure:

 (

)

where . However, even a sparse representation ofthe
matrix still grows dramatically with the system size. Therefore
it is most efficient to create only Ny × Ny matrix blocks directly,
when they are needed in the algorithm.

2) Problem 2: The Eigenvalue solver:
To obtain the modes and wave vectors of the system, we

have to solve the Eigenvalues problem for the transverse
Hamiltonian Hy. The Eigenvalues represent the modes and the
Eigenvector matrix yields the wave functions for the self
energy matrix. While there is probably potential to optimize the
algorithm for the Eigenvalue solver, it is even more
advantageous to completely remove the numerical Eigenvalue
problem by solving it analytically. The analytical solution to
the Eigenvalue problem is a simple one-dimensional quantum
well problem and the solution is known. So we do not focus on
any numerical optimizations of this part and instead suggest to
replace it with its analytic solution.

3) Problem 3: Matrix Inversion:
As most of the computation time is spent on the matrix

inversion to determinethe Green’s function in Eqn. 14 our main
focus was tooptimize this part of the code. There are several
ways to avoid the directinversion of the full matrix to obtainG.
One approach is to use blockwise inversion. This improves the
performance over a direct inversion and can be applied
recursively. However, it is more advantageous to apply the
blockwise inversion only later in optimized codesto improve
the performance of remaining inversions ofsmaller sub-
matrices, and to first utilizethe special structure of the matrix to
enhance the performance and parallelism. The optimizations
aredescribed in detail in Sec. IV-C through IV-F.

4) Problem 4: The final matrix multiplication:
To obtain the transmission and reflection coefficients for

the two leads of our system eight multiplications of
Ny×Nymatrices are necessaryaccording to Eqn. 17. The
structure of the algorithm allows to execute four of them in
parallel. The other four need the results of the first set of
multiplications. After receiving these results they can also be
executed in parallel. By making use of high-performance
matrix multiplication functions this task reaches a high level of
parallel execution (see below). As the computational load of
this part is small compared to the inversion no further
optimizations have been done to this part.

B. First Optimization: optimized linear algebra functions

National Instruments developed a LabVIEW High
PerformanceAnalysis Library (HPAL) [5]. HPAL exposes

linearalgebra functions from Intel’s Math Kernel Library
(MKL)[6]from within LabVIEW. These functions are
optimized forexecution on multi-core processors and designed
to workwhen the input matrices are extremely large.We replace
the functions for matrix multiplication andmatrix inversion.
The benchmark results in Section VI showthat we are still
limited by the inefficient use of memory byusing dense
matrices.

C. Second optimization: sparse matrices

To take advantage of the sparsity of the matrices, we
employed the sparse matrix functions in the HPAL library
replacing the inversion by the PARDISO direct sparse linear
solver [7], [8]. The benchmarks show that the PARDISO solver
is faster than a dense solver, but still has memory issues above
Nx = Ny = 700 as the PARDISO solver generates a lot of
intermediate data.

D. Third optimization: Block-Tridiagonal solver

The matrix representing the HamiltonianH has a block tri-
diagonal structure, suggesting to use the generalized Thomas
algorithm [9] as the replacement of the PARDISO solver in the
previous section. Assuming that the block tri-diagonal linear
system is

[

]

[

]

[

]

whereAk, Bk,andCkare all Ny×Nyblocks. The solution can be
computed by the following two steps.

Step 1: for k from 1 to Nx

 ̂
 (̂)

Step 2: for k from Nxto 1

 ̂

This algorithm takes advantage of the sparsity of the matrix
to achieve significant speedup, but still requires relatively large
memory. There are 3NyNy×Nycomplex matrices generated
between step 1 and step 2. For Nx= Ny= 1000, storing these
matrices would need 48 GB RAM and forcing slow data
exchange with hard disk media.

E. Fourth optimization: Improved Block-Tridiagonal solver

Since we only need the four Ny × Nycorners of the inverse
matrix, we are solving two linear systems with the right hand
sides

 [
]

and

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

89

 []

where
is an Ny×Nyidentity matrix. We are only interested

in the first and last blocks in the solutions. The last block of
each linear system is already computed after the first step in the
Thomas Algorithm. Thus, we propose another method to
compute the first block.

Denote

[

]

whereK satisfies K
T
= K and K

2
= I. Furthermore, if

[

]

then

[

]

Since (KAK)
-1

= KA
-1

K, the upper left(right) corner of A
-1

is
equal to the lower right(left) corner of (KAK)

-1
. The first step of

Thomas algorithm with KAK would thus give the upper
left(right) corner of A

-1
. The new algorithm we propose saves

memory because it does not go through the second step.
Although the algorithm introduces an extra matrix inversion by
going through the first step twice with A and KAK separately,
the extra calculation could be compensated by parallelization
on multi-core machines. The benchmark results in Section VI
show that this algorithm is much faster and can handle very
large grid sizes.

F. Fifth optimization: Pipelined Block-Tridiagonal solver

To further improve the performance by making use
ofparallel architectures we pipelined sequential linear
algebracalculations. By adjusting each group of operations to
haveroughly the same complexity, we ensured a constant
highlevel of utilization on all available cores during the
fullinversion algorithm. As can be seen in Fig. 2E the algorithm
of Sec. IV-E consists of two inversions and one matrix

Table 1 Summary of the benchmark results for the CPU-based algorithms. Version 0 is the original inversion algorithm. Version 1 uses

the optimized LabVIEW High-Performance Conuting libraries. Version 2 makes use of the matrices’ sparsity. Version 3 is the first

implementation of the block-tridiagonal solver. Version 4 is the optimized block-tridiagonal solver. Version 5 is the optimized block-

tridiagonal solver with pipelining for improved thread utilization.

(o.o.m. stands for out of memory – this benchmark could not be performed on the test machine)

Systemsize

(Nx=Ny)

Matrixsize

(Nx•Ny)

Version 0

direct

inversion

Version 1

HPAL

library

Version 2

Sparse

matrices

Version 3

BT-solver A

Version 4

BT-solver B

Version 5

Pipelining

(sites) (elements) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

10 100 0.007 0.017 0.002 0.001 0.001 0.001

20 400 0.192 0.407 0.006 0.004 0.004 0.003

30 900 2.096 2.684 0.013 0.016 0.013 0.008

40 1600 11.745 13.261 0.026 0.038 0.024 0.017

50 2500 49.714 47.328 0.054 0.081 0.048 0.038

60 3600 148.369 138.163 0.088 0.154 0.072 0.058

70 4900 346.183 339.151 0.134 0.215 0.114 0.094

80 6400 769.706 730.780 0.201 0.371 0.151 0.127

90 8100 1647.595 1543.517 0,241 0.468 0.214 0.187

100 10000 2964.965 2949.634 0.357 0.715 0.279 0.236

200 40000 o.o.m. o.o.m. 2.194 8.662 2.248 1.765

300 90000 o.o.m. o.o.m. 7.560 42.750 7.804 5.767

400 160000 o.o.m. o.o.m. 18.323 130.317 20.709 14.643

500 250000 o.o.m. o.o.m. 39.306 311.673 57.965 33.411

600 360000 o.o.m. o.o.m. 72.519 595.367 102.021 61.147

700 490000 o.o.m. o.o.m. 125.120 o.o.m. 168.005 109.006

800 640000 o.o.m. o.o.m. o.o.m. o.o.m. 263.918 191.874

900 810000 o.o.m. o.o.m. o.o.m. o.o.m. 389.083 297.420

1000 1000000 o.o.m. o.o.m. o.o.m. o.o.m. 538.907 422.620

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

90

multiplication per iterations. The two inversions are
independent of each other and can be executed in parallel.
However the additional multiplication relies on the results of
one of the inversions. On the other hand the result of this
multiplication is not needed to calculate either of the two
inversions of the next iteration. This means that during the
execution of the two inversions a high degree of parallel
execution is already reached. But during the execution of the
multiplication the second branch of the code that only contains
the inversion is idle and waits for the unrelated result of the
serial multiplication of the other code branch.

We eliminated this remaining bottleneck by employing the
technique of pipelining. The result of the upper inversion is fed
to a queue as can be seen in Fig. 2F. Now both branches of the
code in the for-loop only contain one matrix inversion and – as
the two matrices to be inverted are of the same size and
complexity – have the roughly the same execution time. The
queued matrices are fed to the separate loop in Fig. 2F where
the multiplication is executed. This task is now executed in
parallel to the for-loop. While the for-loop processes the
inversions for step n, the separate while loop executes the

multiplication for the n-1. This ensures much better utilization
of the available parallel computing resources on modern multi-
core platforms. At the same time the memory usagestays below
3 GB for system of up to Nx = Ny = 1000.

V. IMPLEMENTATION ON GPUS

As the optimized pipelined block-tridiagonal solver
stillrepresents the most demanding part of our code, we
furtherimproved its performance by employing GPUs. As
almostexclusively matrix multiplications and inversions have
tobe performed and several operations are done in
parallel,GPUs yield a high performance potential. The other
partsof the code focus on pre- and post-processing steps
whichlack computational complexity. Therefore, these
processes are executed exclusivelyon the host processor cores.
We used a prototype of theLabVIEW GPU Analysis Toolkit
for the implementation onGPUs [10]. The small memory
footprint of the optimizedblock-tridiagonal solver allows us to
download the data for the entireproblem to the GPU and invoke
the solver on the GPUdevice, retrieving only the final results.

This minimizes communicationbetween host and GPU during
the most criticalprocessing time. The efficient memory
structure also allowsthe host to execute multiple independent
simulation steps(i.e. as part of a sweep of e.g. potential or
Fermi Energy) inparallel if more than one GPU is available.

VI. BENCHMARKS

We ran code implementing the direct inversion of the
Green’s function matrix (Version 0) and the different
optimizations of Sec. IV-B through IV-F (Version 1 through 5)
on an IBM idataplex dx360 M3 workstation [11] with two Intel
Xeon X5650 six-core processors, running at 2.67 GHz, 48 GB
random access memory, and two NVIDIA Tesla M2050 GPUs
with 3 GB random access memory and 448 CUDA computing
cores each [12]. All code was written in LabVIEW 2011 using
functionality provided by the High Performance Analysis
Library (HPAL) and the GPU Analysis Toolkit. Internally,
HPAL called Intel’s Math Kernel Library (MKL) v10.3 for
execution on the CPU’s multiple cores. The GPU Analysis
Toolkit invoked routines from NVIDIA’s CUDA Toolkit v4.0
and CUBLAS libraries to execute code on the Tesla GPUs. The
benchmarks were performed with a 64-bit version of LabVIEW
2011 running under Windows 2008 Server Enterprise Edition.
The driver for the NVIDIA Tesla GPUs was set to TCC mode
to allow remote access to the machines via the Windows
Remote Desktop Client.

Table 2 Benchmark results for the GPU implementation of the

pipelined and optimized block-tridiagonal matrix inversion

solver.

Fig.3 Benchmark results in terms of simulation steps in x-

direction per hour in dependence on the system size in y-

direction.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

91

Results from the CPU-based implementations are shown in
TABLE I. Results for the code in version 5 which executed
primarily on NVIDIA’s Tesla M2050 GPUs are shown in
TABLE II. The results include just the execution of the
inversion algorithm described in Section IV-F. The
initialization and post-processing are not taken into account as
they represent just a fraction of the computation time.
However, the presented benchmarks include the time for
transferring the initial data to the GPUs and to retrieve the final
results from them.

To visualize the performance of the different
implementations we summarized the results and show the
number of system slices along the x-directionthat can be
simulated per hour on a single node or a singleGPU in Fig. 3.
These timings are dependent on the number of system sites in
the y direction. This number gives a good description of the
performance related to the system size and shows the
applicability of our CPU and GPU-based implementations to
systems with realistic dimensions.

While the information is given for a two-dimensional
system, where the transversal slice is one-dimensional, the
same holds for three dimensional systems, where the number of
sites is the product of height and width of the system.

VII. CONCLUSION AND OUTLOOK

Transport simulations in semiconductor nanostructures rely
on the Green’s function algorithm. Direct implementationsof
this algorithm designed to obtain accurate results for a realistic
device size using a sufficiently small grid spacing yield
gigantic matrices which then need to be inverted. The
problemsize coupled with the required dense matrix
computations make such a solution already impractical for
relatively small systems.

Our optimizedimplementations avoid the massive matrix
sizes by exploiting the underlying sparse structure using a
block-diagonal solver to reduce memory load from (NxNy) ×
(NxNy) matrices to Ny×Ny matrices. By employing pipelining

we further enhanced the parallelism of the algorithm and
balanced the computational load between parallel threads on
different cores or devices maximizing performance. The
efficient use of memory allows implementing the whole matrix
inversion algorithm on a NVIDIA Tesla M2050 GPU. The
calculation is done without transferring data between the host
and the GPU during the calculation.

With the above summarized techniques we were able to
increase the system size by a factor of 100 compared to the
primitive algorithm and even beyond (which is then beyond the
scope of the intended simulations). At the same time we were
able speed up the calculation of the transmission function on
the host computer by a factor of 12,500 demonstrating the high
efficiency of our algorithm. The implementation of the
inversion algorithm on the GPUs yields a further performance
gain by a factor of three. Taking into account the fact that a
second simulation step can be executed in parallel on the
second NVIDIA Tesla M2050 GPU the performance
enhancement per IBM idataplex dx360 M3 computing node by
the GPU implementation is a total factor of six.

The simulation of the transport in dependence on one varied
parameter (e.g. gate voltage) with 1000 steps for a device of
1 μm by 1 μm and a grid spacing of 1 nm takes a total time of
approximately 19 hours. Given the large system size and the
fine grid together with a high resolution for the swept
parameters we reach a very high performance with our
algorithm. The option of further parallelization of the
simulation by distributing different steps of the sweep not only
over the two GPUs of one node but also over several nodes,
allows even higher performance of the presented algorithm for
extreme precise simulations of transport in nanostructures with
realistic dimensions in very fast computing times.

Having demonstrated the feasibility of these simulations in
general, we are now expanding the code to three-dimensional
structures and multiple bands for electron and hole transport.
The addition of multiple bands increases the size of the
matrices to (NxNyNs) × (NxNyNs), where Ns is the number of
bands taken into account. The more demanding step is the
implementation of three-dimensional systems, where each
”slice” of the system is no longer represented by a matrix of
Ny×Ny elements, but by a matrix of (NyNz) × (NyNz). It can
easily be seen that the matrix size immediately reaches extreme
dimensions bringing new challenges to the forefront. Therefore
we will explore additional techniques to combine the resources
of multiple GPUs within one computing node as well as to
combine multiple nodes to calculate the transport properties of
complex three-dimensional nanostructures.

ACKNOWLEDGMENT

This work was supported in part by the Deutsche
Forschungsgemeinschaft via the Graduiertenkolleg 1286
”Functional Metal-Semiconductor Hybrid Systems”and Project
Me916/11-1 ”Spin-Filter Cascades in
InAsHeterostructures”,the Free and Hanseatic City of Hamburg
via the Center of Excellence”Nanospintronics”, the Office of
Naval Research via ONR-N00014110780,and the National
Science Foundation by NSF-MRSEC DMR-0820414,
NSFDMR-1105512, NHARP

Systemsize

(Nx=Ny)

Matrixsize

(Nx•Ny)

GPU Pipelined

BT-Solver

(sites) (elements) (seconds)

128 16384 2.463

256 65536 0.691

384 147456 2.936

512 262144 8.887

640 409600 21.255

768 589824 43.610

896 802816 80.244

1024 1048576 136.685

1280 1638400 332.707

1536 2359296 688.338

1792 3211264 1272.800

2048 4194304 2170.260

2560 6553600 5290.440

3072 9437184 10964.600

3584 12845056 20297.700

4096 16777216 34616.500

5120 26214400 84462.700

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

92

REFERENCES

[1] S. Datta and B. Das, Appl. Phys. Lett., vol. 56, no. 7, p. 665, 1990.

[2] J. Wunderlich, B.-G. Park, A. C. Irvine, L. P. Zrbo, E. Rozkotov, P.
Nemec, V. Novk, J. Sinova, and T. Jungwirth, Science, vol. 330, no.
6012, pp. 1801–1804, 2010.

[3] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge
University Press, 1999.

[4] T. Usuki et al., Phys. Rev. B, vol. 50, pp. 7615–7625, 1994.

[5] LabVIEW 2010 High Performance Analysis Library. National
Instruments. [Online]. Available:
https://decibel.ni.com/content/docs/DOC-12086

[6] Intel Math Kernel Library. Intel. [Online]. Available:
http://software.intel.com/en-us/articles/intel-mkl/

[7] O. Schenk, A. Waechter, and M. Hagemann, Journal of Computational
Optimization and Applications, vol. 36, no. 2-3, pp. 321–341, 2007.

[8] O. Schenk, M. Bollhoefer, and R. Roemer, SIAM Review, vol. 50, pp.
91–112, 2008.

[9] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C. Cambridge University Press, 1999, vol. 123, p. 50.

[10] LabVIEW GPU Analysis Toolkit. National Instruments. [Online].
Available: www.ni.com

[11] idataplex dx360 M3 Datasheet. IBM. [Online]. Available: http://www-
03.ibm.com/systems/x/hardware/idataplex/dx360m3/index.html

[12] Tesla M2050 GPGPU Datasheet. NVIDIA.
http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf.

