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Abstract—We present an efficient algorithm for numerical 

simulations of charge transportthrough semiconductor 

nanostructures performed withinthe Green’s function formalism. 

The commonly used algorithmto compute the conductance of 

nanostructures in this formalismhas been adapted for parallel 

execution on both multicore computersand general-purpose 

graphics processing units (GPU) in a memory-efficient way to 

allow simulations of devices with realistic dimensions. 
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I.  INTRODUCTION 

The continuing miniaturization of circuits comes 
notwithout side effects; as the dimensions of such 
devicesdecrease, quantum effects become increasingly relevant 
to their operation.While these effects can be detrimental to 
standard CMOSdevices, they also pave the way for new kinds 
of devices that havethe potential for significant performance 
improvements by employing the spin degree of freedom of the 
electrons as an additional or alternative information carrier. 
Spin-based transistors,utilizing magnetic source and drain 
contacts connected to a spin-orbit coupled semiconductor 
channel, provide animportant example. Such devices would 
require less energyfor switching processes, since their channels 
no longer haveto be depleted completely [1]. With rather small 
gate voltages, one canchange the electric field across the 
channel and thereby the spin-orbit coupling strength. This 
changestheelectron’sspin-precession length and thereby its spin 
orientation with respect to the magnetization of thedrain 
electrode [2].Controllable phenomena such as this could leadto 
a new paradigm in information processing, whereby the spin of 
an electron becomes a relevant degree of freedom. 

Although the physics of charge-based devices is quite well 
understood,physicists and engineers still face challenges 
regardingthe experimental realization of their spin-based 
cousins.While analytical predictions regarding these 

nanoscaledevicescan be made, it is challenging and often 
impossible to compare such predictions with experimental 
results due to the oversimplificationof the analytical model. 
However, numerical simulations of the transport properties of 
nano-structured semiconductor devicesprovide a very 
important bridge between analytical descriptionsand 
experimental results. In such simulations donor impurities, 
lattice imperfections, and interactions within a sample that are 
ordinarily inaccessible to most analytical computations can be 
taken into account, providing researchers with far more 
accurate predictions to compare with experiments. 
Unfortunately, while these devices are rather small for 
fabrication they are still huge for numerical simulations if one 
wants to simulate these devices with both realistic dimensions 
and appropriately minute grid sizes, resulting in large 
computational and memory load. 

One of the common approaches to simulate transport in 
semiconductor nanostructures is the non-equilibrium  Green’s 
function (NEGF) method [3]. Other popular approaches, such 
as the stabilized transfer matrix algorithm [4], can be translated 
in terms of the NEGF method; it exhibits a similar 
mathematical structure and thus employs similar numerical 
techniques. In this work we explore optimized implementations 
of  the  Green’s  function  method for application to parallel 
architectures of multi-core CPUs and their scalability over 
multiple threads, as well as their portability to general purpose 
graphics processing units (GPU). 

II. MATHEMATICAL AND PHYSICS BACKGROUND 

We  briefly  introduce  the  Green’s  function  method  to 
simulatetransport in mesoscopic structures [3]. In conductors 
whose dimensionsare small enough such that interface 
resistances and the number of transverse modes an electron can 
occupy are delimiting factors, one must use the Landauer 
formula  in  order  to  calculate  the  samples’ conductance. 
Essential to this formula is the transmission probability T, 
describing the total probability of carriers to transmit through 
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the sample from one contact to the other. Overall the Landauer 
formula is given by 

   
   

 
  

whereeis the elementary charge and his Planck’s constant.It is 
natural in these systems that different quantum-
mechanicalmodesexist in which carriers can propagate through, 
not unlikely different channels or lanes in a highway. We 
definethe matrix elements smnas the quantum-mechanical 
probability amplitudes of acarrierthat begins in the m-th mode 
of one contact, scatters through the sample, and leaves in the n-
th mode of the other contact. 

If the conductor is much smaller than the phase-
relaxationlength, then transport is coherent and the total 
transmissionprobability can be decomposed into the sum of 
these amplitudessquared (i.e. with no interference). Thus one 
may write 

    
   

 
∑         (2) 

where, 

      |   |
  

Thus by determining the s-matrix of the microscopic 
sample,one can compute the conductance using the 
Landauerformula. Green’s functions provide a convenient way 
to dothis; however, the relationship between Green’s functions 
and the s-matrix is beyond the scope of this work. Instead, after 
demonstrating how to calculate the Green’s function for a 
particular sample, we will merely state the formula for T. It is 
useful, however, to keep in mind that physical meaning of the 
Landauer formula. 

We begin by defining a Green’s functionG (not to be 
confused with the conductance G), for a systemgoverned by 

some Hamiltonian  ̂    

 [   ̂   ]                  

Essentially we have rewritten the Schrödinger equation 
withan added source term. From this perspective, one can 
imaginethe Green’s function to simply be the wavefunction 
given interms of the position vector rwherer’is a parameter 
describing the locationof the source. 

To calculate the Green’s function the aboveconcept is 
applied to a tight-binding model by the methodof finite 
differences, such that 

             

whereiandjare indices denoting different lattice 
positionscorresponding(in the continuum limit) to randr’. As a 
result the aforementioneddifferential equation becomes a 
matrix equation 

 [    ]    

It should be made clear that, regardless of the 
dimensionality of the system, each row or column in the above 
matrices stands fora particular lattice site within the entire 
sample. For example, a two-dimensional system containing Nx 
horizontal sites and Ny vertical sites is described by matrices of 
dimension(NxNy) × (NxNy).Therefore, in the case of two (or 
three) dimensional systems, one must keep track of an 
appropriate labeling system to denote which row or column 
corresponds to which lattice site. 

Since we have converted the Hamiltonian from a 
differentialoperator to a matrix operator, we must introduce 
discretizedderivative operators, given by 

 *
  

  
+
  (  
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   [             ] 

As an example of a Hamiltonian matrix for a one-
dimensionalsystem, with a simple kinetic and potential 
term,one can consider, 

    

(

 
 

      
            
           
           
      )

 
 
 

where         is the so-called hopping parameter and 
Uidenotes the potential at each lattice site. Such a matrixcan be 
rewritten for two or three-dimensional systems givenan 
appropriate labeling system, as mentioned before. Written in 
this way, one cancomputeG through matrix inversion. 

   [    ]   

It should be noted that there exist two independent 
solutions(corresponding to different boundary conditions) for 
G, normally referred to as the retarded and advancedGreen’s 
functions; often an imaginary parameter is addedto the energy 
in Eqn. 10 in order to force the solutionto be one or the other. 
For our present purposes we shallomit this imaginary factor. 

As solutions like Eqn. 10 forHamiltonians such as Eqn. 9 
only provide information aboutscattering within a sample, and 
say nothing of the sample’s connection to external leads, which 
are paramount in calculating conductance in these regime and 
are always present in experiments. One normally proceeds by 
assumingthat the sample is connected to the leads at various 
latticesites, and that only the directly neighboring lattice sites 
within thelead itself are relevant to compute the lead’s full 
effect on transmission. If the leads are semi-infinite, 
homogenous, and reflection-less, one can show that this is not 
an approximation, but an exact statement. We shall consider 
the case in which there are two leads, labeled p and q and the 
sample is denoted as c. Our sample shall be represented by 
aNx × Ny grid, where the x-direction runs horizontal and the y-
direction runs vertical. We assume that each lead is connected 
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fully to either vertical side of the sample, such that there are 
Nyneighboring points in each lead. One can then rewrite the 
Green’s function in block matrix form as 

   (

        

      

      

) 

All carriers enter or leave the sample via Gcp or Gcqand 
propagate throughout the sample via Gc. We also include the 
possibility for carriers to propagate within the leads themselves 
via GporGq. One can see through inspection of the block matrix 
that there is no direct connection between differing leads; 
carriers must transmit through the sample to travel between p 
and q. We assume the following structure for G: 

   (

         

  
       

  
       

)

  

 

Note that each element in the above block matrix 
hasdifferent dimensions, depending on the number of 
latticesites corresponding to the portion they describe. We 
make one more assumption, namely that a carrier present in a 
lead may only enter the sample through a horizontally adjacent 
site. Then one may write 

 |     |  
      

We now have to solve for Gc. One can show, after some 
algebra, that 

    [       ]   

where 

   (
      

   
   

)  (

   
   
      

)        

and 

       [        ]
  

 

Note that theΣp(q)are (NxNy) × (NxNy)matrices, while 
gpandgqareNy × Nymatrices. Equation 14 successfully describes 
the Green’s function for a sample with two leads in terms of the 
hopping parameter t, the Fermi energy E, the conductor’s 
Hamiltonian Hc, and the lead’s Hamiltonians Hp(q). All that is 
left, using this information, is to calculate the transmission 
probability. This is then calculated by 

   ∑       [        
 ]    

where 

        |           
 | 

III. BASIC IMPLEMENTATION 

The straightforward implementation of this algorithm 
includes the following steps (see Fig. 1): First the potential 
landscape of the sample, the Hamiltonian H for the system as 
well as the transverse Hamiltonian Hy describing the hopping 
within one transversal slice are defined. In the second step the 
eigenvalues and vectors for Hy are determined. In step three 

they are then used to define the self-energies       of the 
leads. In the fourth step the Green’s function can be calculated 
with these information. In step five the Γ matrices are created. 
In step sixthe transmission probability is calculated from the 
Green’s functions and the Γ matrices. 

The first step contains the user input processing and does 
not require significant computational resources. However, the 

Fig.1 Flowchart for the basic Green's function algorithm. 

The grey steps (3.) and (5.) do not need much 

computational resources and do not yield high 

optimization potential. The yellow steps (2.) and (6.) have 

potential of optimization. However, their computational 

or memory load is that small compared to the main 

bottlenecks that they were not the main focus of this 

work. The red tasks (1.) and (4.) yield the highest 

potential for optimization by enhancing the memory 

efficiency in (1.) and developing a new algorithm for (4.). 
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matrix of the HamiltonianH is of the size (NxNy) × (NxNy), and 
therefore immediately gets extremely big for 
increasingsystemsize, causing memory issues when 
implemented as a dense matrix. This would limit the 
applicability of the concept to systems of realistic dimensions 
already before the calculation itself starts. 

The Eigenvalue problem in the second step can take a 
significant share of computing resources for extremely large 
systems. It computes the Eigenvalues and Eigenvectors of a 
Ny × Ny matrix. 

The calculation of the self energies   and   in step three 
involves only simple scalar operations executed on the 
elements of the previously defined matrices. 

The fourth step represents the computational bottleneck of 
the NEGF method and in this basic implementation heavily 
limits the system size as a (NxNy) × (NxNy) matrix has to be 
inverted in Eqn. 14. This is the most resource-demanding part 
of the methodandwill be addressed extensively by our 
optimizations below. 

Creating the matrices    and   in step five only involves 

scalar operations on the elements of the self energies  and   . 
As this calculation is independent of the inversion in step four, 

it can be done in parallel. It is also of much lower resource 
demand as the inversion step. 

The final step six obtains the transmission and reflection 
coefficients from the traces of several matrix products as 
described by Eqn. 17. The four matrices that have to be 
multiplied for each trace are of (NxNy) × (NxNy) size. 

IV. OPTIMIZATIONS 

A. Analysis of the basic implementation 

1) Problem 1: Memory efficiency of the matrix H: 
TheHamiltonianmatrix H is of the size(NxNy) × (NxNy). As 

it grows fastwith system size this becomes the limiting memory 
factor already for very small systems.However, the matrix 
allows optimization ofthe memory performance by making use 
of its sparsity: 

   

(

 
 
 
 

       
       
       
       
       
       
       )

 
 
 
 

 

Fig.2 Visualization of the different algorithms for the matrix inversion. A&B in the upper left corner represents the basic algorithm 

with a direct matrix inversion to obtain the Green’s function as used in Version 0 and 1. C on the left corresponds to the spares matrix 

PARDISO solver algorithm in Version 2. D on the upper right shows the first implementation of the block-tridiagonal solver in 

Version 3. E in the lower right shows the improve block-tridiagonal solver that eliminates the need to store intermediate data. F in the 

lower right finally shows the pipelined version of this code that makes the most efficient use of the available computational resources 

and has been implemented as Version 5 on the CPU and the GPU system. 
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where             ,        , with the hopping 
parameter         and the potential energy at a given 
site       . Using the extreme sparsity of this matrix 
significantly enhances the memory performance.The same is 
true for the transverse Hamiltonian, that has aneven simpler 
structure: 

   (

    
    
    
    

) 

where     . However, even a sparse representation ofthe 
matrix still grows dramatically with the system size. Therefore 
it is most efficient to create only Ny × Ny matrix blocks directly, 
when they are needed in the algorithm. 

2) Problem 2: The Eigenvalue solver: 
To obtain the modes and wave vectors of the system, we 

have to solve the Eigenvalues problem for the transverse 
Hamiltonian Hy. The Eigenvalues represent the modes and the 
Eigenvector matrix yields the wave functions for the self 
energy matrix. While there is probably potential to optimize the 
algorithm for the Eigenvalue solver, it is even more 
advantageous to completely remove the numerical Eigenvalue 
problem by solving it analytically. The analytical solution to 
the Eigenvalue problem is a simple one-dimensional quantum 
well problem and the solution is known. So we do not focus on 
any numerical optimizations of this part and instead suggest to 
replace it with its analytic solution. 

3) Problem 3: Matrix Inversion: 
As most of the computation time is spent on the matrix 

inversion to determinethe Green’s function in Eqn. 14 our main 
focus was tooptimize this part of the code. There are several 
ways to avoid the directinversion of the full matrix to obtainG. 
One approach is to use blockwise inversion. This improves the 
performance over a direct inversion and can be applied 
recursively. However, it is more advantageous to apply the 
blockwise inversion only later in optimized codesto improve 
the performance of remaining inversions ofsmaller sub-
matrices, and to first utilizethe special structure of the matrix to 
enhance the performance and parallelism. The optimizations 
aredescribed in detail in Sec. IV-C through IV-F. 

4) Problem 4: The final matrix multiplication: 
To obtain the transmission and reflection coefficients for 

the two leads of our system eight multiplications of 
Ny×Nymatrices are necessaryaccording to Eqn. 17. The 
structure of the algorithm allows to execute four of them in 
parallel. The other four need the results of the first set of 
multiplications. After receiving these results they can also be 
executed in parallel. By making use of high-performance 
matrix multiplication functions this task reaches a high level of 
parallel execution (see below). As the computational load of 
this part is small compared to the inversion no further 
optimizations have been done to this part. 

B. First Optimization: optimized linear algebra functions 

National Instruments developed a LabVIEW High 
PerformanceAnalysis Library (HPAL) [5]. HPAL exposes 

linearalgebra functions from Intel’s Math Kernel Library 
(MKL)[6]from within LabVIEW. These functions are 
optimized forexecution on multi-core processors and designed 
to workwhen the input matrices are extremely large.We replace 
the functions for matrix multiplication andmatrix inversion. 
The benchmark results in Section VI showthat we are still 
limited by the inefficient use of memory byusing dense 
matrices. 

C. Second optimization: sparse matrices 

To take advantage of the sparsity of the matrices, we 
employed the sparse matrix functions in the HPAL library 
replacing the inversion by the PARDISO direct sparse linear 
solver [7], [8]. The benchmarks show that the PARDISO solver 
is faster than a dense solver, but still has memory issues above 
Nx = Ny = 700 as the PARDISO solver generates a lot of 
intermediate data. 

D. Third optimization: Block-Tridiagonal solver 

The matrix representing the HamiltonianH has a block tri-
diagonal structure, suggesting to use the generalized Thomas 
algorithm [9] as the replacement of the PARDISO solver in the 
previous section. Assuming that the block tri-diagonal linear 
system is 
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whereAk, Bk,andCkare all Ny×Nyblocks. The solution can be 
computed by the following two steps. 

Step 1: for k from 1 to Nx 

                 
     

  ̂                
  (        ̂   ) 

Step 2: for k from Nxto 1 

     ̂         

This algorithm takes advantage of the sparsity of the matrix 
to achieve significant speedup, but still requires relatively large 
memory. There are 3NyNy×Nycomplex matrices generated 
between step 1 and step 2. For Nx= Ny= 1000, storing these 
matrices would need 48 GB RAM and forcing slow data 
exchange with hard disk media. 

E. Fourth optimization: Improved Block-Tridiagonal solver 

Since we only need the four Ny × Nycorners of the inverse 
matrix, we are solving two linear systems with the right hand 
sides 

 [   
   ]  

and 
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 [      ]  

where   
is an Ny×Nyidentity matrix. We are only interested 

in the first and last blocks in the solutions. The last block of 
each linear system is already computed after the first step in the 
Thomas Algorithm. Thus, we propose another method to 
compute the first block. 

Denote 
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whereK satisfies K
T
= K and K

2
= I. Furthermore, if 
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Since (KAK)
-1

= KA
-1

K, the upper left(right) corner of A
-1

is 
equal to the lower right(left) corner of (KAK)

-1
. The first step of 

Thomas algorithm with KAK would thus give the upper 
left(right) corner of A

-1
. The new algorithm we propose saves 

memory because it does not go through the second step. 
Although the algorithm introduces an extra matrix inversion by 
going through the first step twice with A and KAK separately, 
the extra calculation could be compensated by parallelization 
on multi-core machines. The benchmark results in Section VI 
show that this algorithm is much faster and can handle very 
large grid sizes. 

F. Fifth optimization: Pipelined Block-Tridiagonal solver 

To further improve the performance by making use 
ofparallel architectures we pipelined sequential linear 
algebracalculations. By adjusting each group of operations to 
haveroughly the same complexity, we ensured a constant 
highlevel of utilization on all available cores during the 
fullinversion algorithm. As can be seen in Fig. 2E the algorithm 
of Sec. IV-E consists of two inversions and one matrix 

Table 1 Summary of the benchmark results for the CPU-based algorithms. Version 0 is the original inversion algorithm. Version 1 uses 

the optimized LabVIEW High-Performance Conuting libraries. Version 2 makes use of the matrices’ sparsity. Version 3 is the first 

implementation of the block-tridiagonal solver. Version 4 is the optimized block-tridiagonal solver. Version 5 is the optimized block-

tridiagonal solver with pipelining for improved thread utilization. 

(o.o.m. stands for out of memory – this benchmark could not be performed on the test machine) 

Systemsize 

(Nx=Ny) 

Matrixsize 

(Nx•Ny) 

Version 0 

direct 

inversion 

Version 1 

HPAL 

library 

Version 2 

Sparse 

matrices 

Version 3 

BT-solver A 

Version 4 

BT-solver B 

Version 5 

Pipelining 

(sites) (elements) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds) 

10 100 0.007 0.017 0.002 0.001 0.001 0.001 

20 400 0.192 0.407 0.006 0.004 0.004 0.003 

30 900 2.096 2.684 0.013 0.016 0.013 0.008 

40 1600 11.745 13.261 0.026 0.038 0.024 0.017 

50 2500 49.714 47.328 0.054 0.081 0.048 0.038 

60 3600 148.369 138.163 0.088 0.154 0.072 0.058 

70 4900 346.183 339.151 0.134 0.215 0.114 0.094 

80 6400 769.706 730.780 0.201 0.371 0.151 0.127 

90 8100 1647.595 1543.517 0,241 0.468 0.214 0.187 

100 10000 2964.965 2949.634 0.357 0.715 0.279 0.236 

200 40000 o.o.m. o.o.m. 2.194 8.662 2.248 1.765 

300 90000 o.o.m. o.o.m. 7.560 42.750 7.804 5.767 

400 160000 o.o.m. o.o.m. 18.323 130.317 20.709 14.643 

500 250000 o.o.m. o.o.m. 39.306 311.673 57.965 33.411 

600 360000 o.o.m. o.o.m. 72.519 595.367 102.021 61.147 

700 490000 o.o.m. o.o.m. 125.120 o.o.m. 168.005 109.006 

800 640000 o.o.m. o.o.m. o.o.m. o.o.m. 263.918 191.874 

900 810000 o.o.m. o.o.m. o.o.m. o.o.m. 389.083 297.420 

1000 1000000 o.o.m. o.o.m. o.o.m. o.o.m. 538.907 422.620 
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multiplication per iterations. The two inversions are 
independent of each other and can be executed in parallel. 
However the additional multiplication relies on the results of 
one of the inversions. On the other hand the result of this 
multiplication is not needed to calculate either of the two 
inversions of the next iteration. This means that during the 
execution of the two inversions a high degree of parallel 
execution is already reached. But during the execution of the 
multiplication the second branch of the code that only contains 
the inversion is idle and waits for the unrelated result of the 
serial multiplication of the other code branch. 

We eliminated this remaining bottleneck by employing the 
technique of pipelining. The result of the upper inversion is fed 
to a queue as can be seen in Fig. 2F. Now both branches of the 
code in the for-loop only contain one matrix inversion and – as 
the two matrices to be inverted are of the same size and 
complexity – have the roughly the same execution time. The 
queued matrices are fed to the separate loop in Fig. 2F where 
the multiplication is executed. This task is now executed in 
parallel to the for-loop. While the for-loop processes the 
inversions for step n, the separate while loop executes the 

multiplication for the n-1. This ensures much better utilization 
of the available parallel computing resources on modern multi-
core platforms. At the same time the memory usagestays below 
3 GB for system of up to Nx = Ny = 1000. 

V. IMPLEMENTATION ON GPUS 

As the optimized pipelined block-tridiagonal solver 
stillrepresents the most demanding part of our code, we 
furtherimproved its performance by employing GPUs. As 
almostexclusively matrix multiplications and inversions have 
tobe performed and several operations are done in 
parallel,GPUs yield a high performance potential. The other 
partsof the code focus on pre- and post-processing steps 
whichlack computational complexity. Therefore, these 
processes are executed exclusivelyon the host processor cores. 
We used a prototype of theLabVIEW GPU Analysis Toolkit 
for the implementation onGPUs [10]. The small memory 
footprint of the optimizedblock-tridiagonal solver allows us to 
download the data for the entireproblem to the GPU and invoke 
the solver on the GPUdevice, retrieving only the final results. 

This minimizes communicationbetween host and GPU during 
the most criticalprocessing time. The efficient memory 
structure also allowsthe host to execute multiple independent 
simulation steps(i.e. as part of a sweep of e.g. potential or 
Fermi Energy) inparallel if more than one GPU is available. 

VI. BENCHMARKS 

We ran code implementing the direct inversion of the 
Green’s function matrix (Version 0) and the different 
optimizations of Sec. IV-B through IV-F (Version 1 through 5) 
on an IBM idataplex dx360 M3 workstation [11] with two Intel 
Xeon X5650 six-core processors, running at 2.67 GHz, 48 GB 
random access memory, and two NVIDIA Tesla M2050 GPUs 
with 3 GB random access memory and 448 CUDA computing 
cores each [12]. All code was written in LabVIEW 2011 using 
functionality provided by the High Performance Analysis 
Library (HPAL) and the GPU Analysis Toolkit. Internally, 
HPAL called Intel’s Math Kernel Library (MKL) v10.3 for 
execution on the CPU’s multiple cores. The GPU Analysis 
Toolkit invoked routines from NVIDIA’s CUDA Toolkit v4.0 
and CUBLAS libraries to execute code on the Tesla GPUs. The 
benchmarks were performed with a 64-bit version of LabVIEW 
2011 running under Windows 2008 Server Enterprise Edition. 
The driver for the NVIDIA Tesla GPUs was set to TCC mode 
to allow remote access to the machines via the Windows 
Remote Desktop Client. 

Table 2 Benchmark results for the GPU implementation of the 

pipelined and optimized block-tridiagonal matrix inversion 

solver. 

Fig.3 Benchmark results in terms of simulation steps in x-

direction per hour in dependence on the system size in y-

direction. 
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Results from the CPU-based implementations are shown in 
TABLE I. Results for the code in version 5 which executed 
primarily on NVIDIA’s Tesla M2050 GPUs are shown in 
TABLE II. The results include just the execution of the 
inversion algorithm described in Section IV-F. The 
initialization and post-processing are not taken into account as 
they represent just a fraction of the computation time. 
However, the presented benchmarks include the time for 
transferring the initial data to the GPUs and to retrieve the final 
results from them. 

To visualize the performance of the different 
implementations we summarized the results and show the 
number of system slices along the x-directionthat can be 
simulated per hour on a single node or a singleGPU in Fig. 3. 
These timings are dependent on the number of system sites in 
the y direction. This number gives a good description of the 
performance related to the system size and shows the 
applicability of our CPU and GPU-based implementations to 
systems with realistic dimensions. 

While the information is given for a two-dimensional 
system, where the transversal slice is one-dimensional, the 
same holds for three dimensional systems, where the number of 
sites is the product of height and width of the system. 

VII. CONCLUSION AND OUTLOOK 

Transport simulations in semiconductor nanostructures rely 
on the Green’s function algorithm. Direct implementationsof 
this algorithm designed to obtain accurate results for a realistic 
device size using a sufficiently small grid spacing yield 
gigantic matrices which then need to be inverted. The 
problemsize coupled with the required dense matrix 
computations make such a solution already impractical for 
relatively small systems. 

Our optimizedimplementations avoid the massive matrix 
sizes by exploiting the underlying sparse structure using a 
block-diagonal solver to reduce memory load from (NxNy) × 
(NxNy) matrices to Ny×Ny matrices. By employing pipelining 

we further enhanced the parallelism of the algorithm and 
balanced the computational load between parallel threads on 
different cores or devices maximizing performance. The 
efficient use of memory allows implementing the whole matrix 
inversion algorithm on a NVIDIA Tesla M2050 GPU. The 
calculation is done without transferring data between the host 
and the GPU during the calculation. 

With the above summarized techniques we were able to 
increase the system size by a factor of 100 compared to the 
primitive algorithm and even beyond (which is then beyond the 
scope of the intended simulations). At the same time we were 
able speed up the calculation of the transmission function on 
the host computer by a factor of 12,500 demonstrating the high 
efficiency of our algorithm. The implementation of the 
inversion algorithm on the GPUs yields a further performance 
gain by a factor of three. Taking into account the fact that a 
second simulation step can be executed in parallel on the 
second NVIDIA Tesla M2050 GPU the performance 
enhancement per IBM idataplex dx360 M3 computing node by 
the GPU implementation is a total factor of six. 

The simulation of the transport in dependence on one varied 
parameter (e.g. gate voltage) with 1000 steps for a device of 
1 μm by 1 μm and a grid spacing of 1 nm takes a total time of 
approximately 19 hours. Given the large system size and the 
fine grid together with a high resolution for the swept 
parameters we reach a very high performance with our 
algorithm. The option of further parallelization of the 
simulation by distributing different steps of the sweep not only 
over the two GPUs of one node but also over several nodes, 
allows even higher performance of the presented algorithm for 
extreme precise simulations of transport in nanostructures with 
realistic dimensions in very fast computing times. 

Having demonstrated the feasibility of these simulations in 
general, we are now expanding the code to three-dimensional 
structures and multiple bands for electron and hole transport. 
The addition of multiple bands increases the size of the 
matrices to (NxNyNs) × (NxNyNs), where Ns is the number of 
bands taken into account. The more demanding step is the 
implementation of three-dimensional systems, where each 
”slice” of the system is no longer represented by a matrix of 
Ny×Ny elements, but by a matrix of (NyNz) × (NyNz). It can 
easily be seen that the matrix size immediately reaches extreme 
dimensions bringing new challenges to the forefront. Therefore 
we will explore additional techniques to combine the resources 
of multiple GPUs within one computing node as well as to 
combine multiple nodes to calculate the transport properties of 
complex three-dimensional nanostructures. 
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Systemsize 

(Nx=Ny) 

Matrixsize 

(Nx•Ny) 

GPU Pipelined 

BT-Solver 

(sites) (elements) (seconds) 

128 16384 2.463 

256 65536 0.691 

384 147456 2.936 

512 262144 8.887 

640 409600 21.255 

768 589824 43.610 

896 802816 80.244 

1024 1048576 136.685 

1280 1638400 332.707 

1536 2359296 688.338 

1792 3211264 1272.800 

2048 4194304 2170.260 

2560 6553600 5290.440 

3072 9437184 10964.600 

3584 12845056 20297.700 

4096 16777216 34616.500 

5120 26214400 84462.700 
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